Wind and solar based energy systems for communities

Machine generated contents note: 1.Introduction / David S-K. Ting -- References -- 2.Data-driven methods for prediction of small-to-medium wind turbines performance / David S-K. Ting -- Abstract -- 2.1.Introduction -- 2.2.SCADA data treatment -- 2.2.1.Mean or median value -- 2.2.2.K-Nearest neighbou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Carriveau, Rupp (HerausgeberIn), Ting, David S.-K. (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Stevenage The Institution of Engineering and Technology 2018
Schriftenreihe:IET energy engineering series 130
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine generated contents note: 1.Introduction / David S-K. Ting -- References -- 2.Data-driven methods for prediction of small-to-medium wind turbines performance / David S-K. Ting -- Abstract -- 2.1.Introduction -- 2.2.SCADA data treatment -- 2.2.1.Mean or median value -- 2.2.2.K-Nearest neighbour -- 2.2.3.Expectation -- maximisation -- 2.2.4.Decision tree -- 2.3.Feature selection -- 2.3.1.Correlation coefficients -- 2.3.2.Principal component analysis -- 2.4.Modelling design networks -- 2.4.1.Multi-layer perceptron -- 2.4.2.Adaptive neuro-fuzzy inference system -- 2.4.3.Static and dynamic networks -- 2.4.4.Fusion -- 2.4.5.Estimation and prediction -- 2.4.6.Performance evaluation -- 2.5.A case study -- 2.5.1.Data pre-processing -- 2.5.2.Monitoring networks -- 2.6.Conclusion -- References -- 3.Optimization of wind farms for communities / Ahmadreza Vasel-Be-Hagh -- Abstract -- 3.1.Introduction -- 3.2.Objective functions and optimization variables -- 3.2.1.Objective functions
Note continued: 3.2.2.Optimization variables -- 3.3.Wake-loss models -- 3.3.1.Large eddy simulations -- 3.3.2.Nonlinear Reynolds-averaged Navier-Stokes (RANS) models -- 3.3.3.Stochastic models -- 3.3.4.Linearized RANS models -- 3.3.5.Empirical wake models -- 3.3.6.Kinematic (analytical) models -- 3.4.Search algorithms -- 3.5.Practice your knowledge -- 3.5.1.Case I: Shape of the wind farm -- 3.5.2.Case II: Wake of wind turbines -- 3.5.3.Case III: Wind speed deficit in wind farms -- 3.5.4.Case IV: Yaw angle of wind turbines -- 3.5.5.Case V: Variation of power production with wind direction -- 3.5.6.Case VI: Surface roughness -- 3.5.7.Case VII: Inner turbines versus outer turbines -- 3.5.8.Case VIII: Wind farm noise production -- 3.5.9.Case IX: Hub height optimization -- 3.5.10.Case X: Fatigue loads -- 3.5.11.Case XI: Turbine type -- 3.5.12.Case XII: Atmospheric stability -- 3.5.13.Case XIII: Wind farms and hurricanes -- References
Note continued: 4.Financing for community wind and solar project development / Rupp Caniveau -- Abstract -- 4.1.Introduction -- 4.1.1.Community wind and solar -- defined -- 4.2.Benefits of community wind and solar -- 4.3.Lessons from overseas -- 4.4.Overview of available incentives and credits in North America -- 4.5.Historical financing models -- 4.5.1.Municipal wind -- 4.5.2.Cooperatives (wind and solar) -- 4.5.3.Private placements (wind and solar) -- 4.5.4.Private equity (wind and solar) -- 4.5.5.Multiple local owner (wind and solar) -- 4.5.6.Flip structures (wind) -- 4.5.7.On-site projects, behind the meter (wind and solar) -- 4.5.8.Utility-sponsored model (wind and solar) -- 4.5.9.Special-purpose entity (wind and solar) -- 4.5.10.Non-profit model (solar) -- 4.6.Innovative financing models -- case studies of community wind -- 4.6.1.Cases from the United States -- 4.6.2.Cases from Canada -- 4.6.3.Discussion on replicability and challenges
Note continued: 4.7.Innovative financing models -- case studies of community solar -- 4.7.1.Cases from the United States -- 4.7.2.Cases from Canada -- 4.7.3.Discussion on replicability and challenges -- 4.8.Summary and conclusions -- References -- 5.Community-level solar thermal systems / Himanshu Tyagi -- Abstract -- 5.1.Introduction -- 5.2.Solar energy -- 5.3.Flat-plate collector -- 5.3.1.Construction and operation of a flat-plate collector -- 5.3.2.Design and operational parameters -- 5.4.Community-level volumetric absorption-based solar collectors (using nanofluids) -- 5.4.1.Numerical model of the volumetric absorption-based solar collector -- 5.4.2.Parameters influencing the performance of the solar collector -- 5.5.Summary -- References -- 6.Solar-water desalination for small communities / David S-K. Ting -- Abstract -- 6.1.Introduction -- 6.2.Types of solar-water desalination -- 6.2.1.Direct solar-water desalination systems
Note continued: 6.3.Mathematical modeling of an inclined solar still -- 6.3.1.Convective heat transfer -- 6.3.2.Radiative heat transfer -- 6.3.3.Evaporative heat transfer -- 6.3.4.Annual cost of water production -- 6.4.Community to study -- 6.5.Future outlook of renewable energy in Pakistan -- 6.5.1.Energy security -- 6.5.2.Economic benefits -- 6.5.3.Social equity -- 6.5.4.Environmental protection -- 6.5.5.Future development of renewable energy -- 6.6.Conclusion -- Acknowledgment -- References -- 7.Community solar PV projects / David S-K. Ting -- Abstract -- 7.1.Introduction -- 7.1.1.What is a community solar PV project? -- 7.1.2.Rationale of community solar PV projects -- 7.1.3.Variations in community solar PV projects -- 7.2.Community solar PV models -- 7.2.1.Grid/utility sponsored community solar PV projects -- 7.2.2.Special purpose entity (SPE) sponsored community solar PV -- 7.2.3.Nonprofit sponsored community solar PV
Note continued: 7.2.4.Comparison of the community solar PV project models -- 7.3.Community solar PV projects implementation barriers -- 7.3.1.High acquisition and installation cost -- 7.3.2.Space -- 7.3.3.Investors -- 7.3.4.No grid connection -- 7.3.5.Lack of government policies -- 7.3.6.Lack of government incentives -- 7.3.7.Complexity issues -- 7.3.8.Customer inertia -- 7.4.Selected examples of existing/future community solar PV projects -- 7.4.1.Ontario, Canada -- 7.4.2.California, United States of America -- 7.4.3.Guyana, South America -- 7.4.4.Germany, Europe -- 7.4.5.Rwanda, East Africa -- 7.5.Summary -- 7.6.Recommendations -- 7.6.1.Policies and regulations -- 7.6.2.Start-up capacity -- 7.6.3.Funding -- 7.7.Conclusion -- Abbreviations -- References -- Further reading -- 8.Assessing wind loads for urban photovoltaic installations / David Wood -- Abstract -- 8.1.Introduction -- 8.2.Wind loading of PV installations using Australian Standard 1170.2
Note continued: 8.2.1.PV wind loading -- 8.3.The urban wind environment -- 8.4.Australian mounting system design practices -- 8.5.Wind tunnel test methods -- 8.5.1.Flat roof experiments -- 8.5.2.Sloped roof experiments -- 8.6.CFD simulations -- 8.7.Discussion and analysis -- 8.8.Conclusions 181 Acknowledgements 182 References -- 9.Design optimization of multi-energy hubs for community energy projects / Sourena Sattari -- Abstract -- 9.1.Introduction -- 9.2.Methodology -- 9.3.Illustrative case study -- 9.4.Results and discussion -- 9.5.Conclusions -- References -- 10.Battery-based storage for communities / Sascha Stegen -- Abstract -- 10.1.Introduction -- 10.2.Technology of battery storage -- 10.2.1.Conventional and advanced lead-acid batteries -- 10.2.2.Lithium-ion batteries -- 10.2.3.Sodium-sulphur batteries -- 10.2.4.Battery storage in power applications -- 10.3.Challenges of EV penetration in distribution grid -- 10.3.1.PEVs in communities
Note continued: 10.3.2.EV charging technologies -- 10.3.3.Infrastructure and control -- 10.3.4.Grid stability -- 10.3.5.Limitations -- 10.4.Economic aspects of battery storage -- 10.4.1.Cost metric -- 10.4.2.Effective cost of a battery -- 10.4.3.System cost breakdown -- 10.5.Energy consumption pattern of a community -- 10.5.1.Regulated power supply -- 10.5.2.Energy usage pattern classification -- 10.5.3.Peak apparent power (VA) identification -- 10.5.4.Summary -- 10.6.Selection process of battery storage -- 10.6.1.Criteria participating in the selection processes -- 10.6.2.Weighting description and TCFs identification -- 10.7.Safety consideration -- 10.7.1.Safety hazard of batteries and mitigation -- 10.7.2.Location of installation -- 10.7.3.Battery storage enclosure -- 10.7.4.Safety policies and standards -- 10.8.Conclusion 243 References -- 11.Power-to-gas and power-to-power for storage and ancillary services in urban areas / Michael Fowler -- Abstract
Note continued: 11.1.Introduction -- 11.2.Methodology -- 11.2.1.Mixed integer linear programming formulation -- 11.3.Results and discussion -- 11.3.1.Development of a premium price mechanism for the energy hub -- 11.4.Conclusion -- References -- 12.Smart multi-energy microgrids / Tomislav Dragicevic -- Abstract -- 12.1.Introduction -- 12.2.Understanding the idea behind flexible multi-energy communities -- 12.2.1.Drivers of distributed MES flexible operation -- 12.3.Flexible operation of distributed multi-energy systems -- 12.3.1.Where does the flexibility come from? -- 12.3.2.Multi-energy community modelling -- 12.4.Concluding remarks -- References -- Suggested literature on other multi-energy aspects -- 13.Conservation and demand management in community energy systems / Bala Venkatesh -- Abstract -- 13.1.Introduction -- 13.2.Role of conservation -- 13.2.1.Definitions and terminology -- 13.2.2.Conservation goals and system philosophy -- 13.2.3.Proposed model
Note continued: 13.2.4.Utilization rates -- 13.2.5.Coincident peaks -- 13.3.Implementation of conservation for CES -- 13.3.1.Disincentives to consume at peak times -- 13.3.2.Incentives to consume outside of peak times -- 13.3.3.New managed system demand patterns -- 13.3.4.Implementation -- 13.3.5.Future scenarios -- 13.4.Conclusions -- Acknowledgments -- References
Beschreibung:Includes bibliographical references and index
Beschreibung:xi, 311 pages
illustrations
25 cm
ISBN:1785615440
1-78561-544-0
9781785615443
978-1-78561-544-3