Mathematical study of degenerate boundary layers a large scale ocean circulation problem

This paper is concerned with a complete asymptotic analysis as E \to 0 of the Munk equation \partial _x\psi -E \Delta ^2 \psi = \tau in a domain \Omega \subset \mathbf R^2, supplemented with boundary conditions for \psi and \partial _n \psi . This equation is a simple model for the circulation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dalibard, Anne-Laure (VerfasserIn)
Körperschaft: American Mathematical Society (Herausgebendes Organ)
Weitere Verfasser: Saint-Raymond, Laure (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Providence, RI American Mathematical Society May 2018
Schriftenreihe:Memoirs of the American Mathematical Society volume 253, number 1206
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with a complete asymptotic analysis as E \to 0 of the Munk equation \partial _x\psi -E \Delta ^2 \psi = \tau in a domain \Omega \subset \mathbf R^2, supplemented with boundary conditions for \psi and \partial _n \psi . This equation is a simple model for the circulation of currents in closed basins, the variables x and y being respectively the longitude and the latitude. A crude analysis shows that as E \to 0, the weak limit of \psi satisfies the so-called Sverdrup transport equation inside the domain, namely \partial _x \psi ^0=\tau , while boundary layers appear in the vicinity of the boundary
Beschreibung:"May 2018, volume 253, number 1206 (first of 7 numbers)"
Enthält bibliographische Angaben und Index
Beschreibung:vi, 105 Seiten
Illustrationen, Diagramme
26 cm
ISBN:9781470428358
978-1-4704-2835-8