Mathematical study of degenerate boundary layers a large scale ocean circulation problem
This paper is concerned with a complete asymptotic analysis as E \to 0 of the Munk equation \partial _x\psi -E \Delta ^2 \psi = \tau in a domain \Omega \subset \mathbf R^2, supplemented with boundary conditions for \psi and \partial _n \psi . This equation is a simple model for the circulation of...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Providence, RI
American Mathematical Society
May 2018
|
Schriftenreihe: | Memoirs of the American Mathematical Society
volume 253, number 1206 |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis Inhaltstext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with a complete asymptotic analysis as E \to 0 of the Munk equation \partial _x\psi -E \Delta ^2 \psi = \tau in a domain \Omega \subset \mathbf R^2, supplemented with boundary conditions for \psi and \partial _n \psi . This equation is a simple model for the circulation of currents in closed basins, the variables x and y being respectively the longitude and the latitude. A crude analysis shows that as E \to 0, the weak limit of \psi satisfies the so-called Sverdrup transport equation inside the domain, namely \partial _x \psi ^0=\tau , while boundary layers appear in the vicinity of the boundary |
---|---|
Beschreibung: | "May 2018, volume 253, number 1206 (first of 7 numbers)" Enthält bibliographische Angaben und Index |
Beschreibung: | vi, 105 Seiten Illustrationen, Diagramme 26 cm |
ISBN: | 9781470428358 978-1-4704-2835-8 |