Nanomaterials for food packaging materials, processing technologies and safety issues
Front Cover -- Nanomaterials for Food Packaging: Materials, Processing Technologies, and Safety Issues -- Copyright -- Contents -- Contributors -- Foreword -- Chapter 1: Nanotechnology in Food Packaging: Opportunities and Challenges -- 1.1. Nanomaterials in Food Packaging -- 1.2. Innovative Solution...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Amsterdam, Oxford, Cambridge, MA
Elsevier
2018
|
Schriftenreihe: | Micro & nano technologies series
|
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Front Cover -- Nanomaterials for Food Packaging: Materials, Processing Technologies, and Safety Issues -- Copyright -- Contents -- Contributors -- Foreword -- Chapter 1: Nanotechnology in Food Packaging: Opportunities and Challenges -- 1.1. Nanomaterials in Food Packaging -- 1.2. Innovative Solutions in Food Packaging Using Nanomaterials -- 1.3. Social and Commercial Acceptance -- Chapter 2: Inorganic-Based Nanostructures and Their Use in Food Packaging -- 2.1. Introduction -- 2.2. Inorganic-Based Nanoadditives and Nanocomposites -- 2.2.1. Strengthening of the Package -- 2.2.2. Enhancement of Gas Barrier Properties -- 2.2.3. Antimicrobial Activity -- 2.2.4. Controlled Release of Active Substances -- 2.2.5. Absorption of Chemical Compounds -- 2.3. Applications of Inorganic Nanoadditives, as a Function of Their Structure -- 2.3.1. 0D Nanoadditives (Nanoparticles) -- 2.3.2. 1D Nanoadditives (Nanofibers) -- 2.3.3. 2D Nanoadditives (Nanolayers) -- 2.4. Classification of Nanoadditives as a Function of Their Nature -- 2.4.1. Metal Based and Oxide Nanoparticles -- 2.4.2. Carbon Based -- 2.4.3. Clay Based -- 2.4.4. Other Nanoadditives -- 2.5. Concluding Remarks -- Chapter 3: Lignocellulosic-Based Nanostructures and Their Use in Food Packaging -- 3.1. Cellulose Nanostructures -- 3.1.1. Nanocellulose Fillers for Reinforcement -- 3.1.2. Nonreinforcement Applications of Cellulose Nanostructures -- 3.2. Hemicellulose Nanostructures -- 3.3. Lignin Nanoparticles -- 3.3.1. Effects of LNPs on Physical Properties of Polymer Materials -- 3.3.2. Antioxidant Properties of LNPs -- 3.3.3. LNPs in Antibacterial Materials -- 3.3.4. UV Absorption by LNPs -- 3.4. Combination of Lignocellulosic Nanoparticles -- 3.5. Environmental Evaluation of Nanocomposite Materials Used in Food Packaging 3.5.1. LCA: A Methodology for Designing Environmentally Sound Nanocomposite Food Packaging -- 3.5.1.1. Goal and Scope Definition -- 3.5.1.2. Inventory Analysis -- 3.5.1.3. Impact Assessment -- 3.5.1.4. Interpretation of Results -- 3.6. Conclusions -- Chapter 4: Bio-Based Nanocomposites in Food Packaging -- 4.1. Introduction -- 4.2. Bioplastics for Food Packaging: Natural and Synthetic Polymers -- 4.3. Bionanocomposites in Food Packaging -- 4.4. Natural Biodegradable Polymer-Based Nanocomposites -- 4.4.1. Polysaccharide-Based Composites -- 4.4.1.1. Starch-Based Systems -- 4.4.1.2. Cellulose-Based Systems -- 4.4.1.3. Chitosan-Based Systems -- 4.4.2. Protein-Based Composites -- 4.5. Synthetic Biodegradable Polymer-Based Nanocomposites -- 4.5.1. PLA Composites -- 4.5.1.1. PLA/Lignocellulosic Nanofillers -- 4.5.1.2. PLA/Nanoclay -- 4.5.1.3. PLA/Metal or Metal Oxide Nanoparticles -- 4.5.2. PHA-Based Composites -- 4.5.3. Biodegradable Polymeric Blend-Based Composites -- 4.6. Biodegradable Polymeric Nanocomposites in Food Packaging Market -- 4.7. Conclusions and Future Trends -- Chapter 5: Production and Processing of Polymer-Based Nanocomposites -- 5.1. Introduction -- 5.2. Properties Required for Processing Polymers: The Advantages of (Nano)additives -- 5.3. Manufacture of PNCs: The Quest for Dispersion -- 5.4. Main Processing Technologies -- 5.4.1. Extrusion (Film and Sheet) -- 5.4.2. Injection Molding (Containers, Lids, and Caps) -- 5.4.3. Blow Molding (Bottles) -- 5.4.4. Thermoforming (Trays, Cups, and Containers) -- 5.4.5. Converting Flexible Films -- 5.5. Conclusions -- Chapter 6: Nanostructured Multilayer Films -- 6.1. Introduction -- 6.2. Multilayer Structures -- 6.2.1. Coatings -- 6.2.2. Interlayers -- 6.3. Production Methodologies -- 6.3.1. LbL Nanoassembly -- 6.3.2. Nanostructured Layers by EHDP -- 6.3.3. Other Techniques 6.4. Conclusion and Future Outlook -- Chapter 7: Active Packaging -- 7.1. Introduction -- 7.2. Antimicrobial Packaging Systems -- 7.2.1. Metal Nanoparticles -- 7.2.1.1. Silver -- 7.2.1.2. Gold -- 7.2.1.3. Copper -- 7.2.2. Metal Oxide Nanoparticles -- 7.2.2.1. Titanium Dioxide -- 7.2.2.2. Magnesium Oxide -- 7.2.2.3. Zinc Oxide -- 7.2.3. Bioactive Compounds -- 7.3. Oxygen Scavengers -- 7.4. Ethylene Scavengers -- 7.5. Conclusions -- Chapter 8: Intelligent Packaging -- 8.1. Introduction -- 8.2. IP Systems -- 8.2.1. Data Carriers -- 8.2.1.1. Barcodes -- 8.2.1.2. Radiofrequency Identification Devices -- 8.2.2. Sensors -- 8.2.2.1. Gas Sensors -- 8.2.2.2. Biosensors -- 8.2.3. Indicators -- 8.2.3.1. Temperature Indicators -- 8.2.3.2. Gas Indicators -- 8.2.3.3. Freshness Indicators -- 8.3. Technologies for IP Systems -- 8.3.1. Printed Electronics -- 8.3.2. Functional Inks for IP -- 8.3.2.1. Conductive Inks for Printed Electronics -- 8.3.2.2. Chromogenic Inks -- 8.3.2.2.1. Photochromic Inks -- 8.3.2.2.2. Thermochromic Inks -- 8.4. Commercial Applications, Research Trends, and Innovations on IP -- 8.4.1. Commercial Applications -- 8.4.2. Research Trends and Innovations -- 8.4.2.1. Gas Sensors and Indicators -- 8.4.2.2. Biosensors -- 8.4.2.3. Temperature Indicators -- 8.4.3. Future Outlook -- Chapter 9: Safety Assessment and Migration Tests -- 9.1. Introduction -- 9.2. Migration Studies -- 9.3. Techniques for Nanomaterial Analysis -- 9.3.1. Sample Preparation -- 9.3.2. Microscopic Techniques -- 9.3.3. ICP-Based Techniques -- 9.3.4. Other Techniques -- 9.4. Research on Migration Potential -- 9.5. Protocols for Safety Assessment -- 9.6. Future Directions -- Chapter 10: Overview on European Regulatory Issues, Legislation, and EFSA Evaluations of Nanomaterials -- 10.1. Introduction -- 10.2. Legal Definitions -- 10.3. Nanomaterials for FCM in European Legislation 10.4. Migration and Modeling -- 10.5. The Cases of Nanomaterials in Food Contact Plastics Already Evaluated or Authorized in Europe -- 10.5.1. Carbon Black (FCM No. 411) -- 10.5.2. Silicon Dioxide-Hydrophilic (FCM No. 504) and Silanated (FCM No. 87) -- 10.5.3. Titanium Nitride (TiN) (FCM No. 807) -- 10.5.4. Iron (II) Modified Bentonite -- 10.5.5. Kaolin Clay and Polyacrylic Acid, Sodium Salt -- 10.5.6. Montmorillonite Clay Modified by Dimethyldialkyl (C16-C18) Ammonium Chloride (FCM No. 1030) -- 10.5.7. Zinc Oxide (ZnO) Nanoparticles-With Organic Coating (FCM No. 1046) and Uncoated (FCM No. 1050) -- 10.5.8. (Butadiene, Ethyl Acrylate, Methyl Methacrylate, Styrene) Copolymer in Nanoform-Not Crosslinked (FCM No. 998) and ... -- 10.6. Future Trends in Safety Evaluation -- Chapter 11: Food Packaging: Surface Engineering and Commercialization -- 11.1. Introduction -- 11.2. The Role(s) of Packaging -- 11.3. Roadmap of Packaging Technology Development From the Beginning to Till Date -- 11.4. Bulk vs Surface Engineering of Packaging Materials (Technology) -- 11.4.1. Surface Engineering Concept for the Application in Food Packaging -- 11.4.2. Block Copolymers and Their Phase Separation Chemistry -- 11.5. Costs and Practicalities -- 11.6. Risks and Benefits -- 11.7. Safety Challenges -- 11.8. Future of Packaging -- Index |
---|---|
Beschreibung: | Literaturangaben |
Beschreibung: | xiv, 332 Seiten Illustrationen |
ISBN: | 9780323512718 978-0-323-51271-8 |