Elliptic boundary value problems with fractional regularity data the first order approach
In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2018
|
Schriftenreihe: | CRM monograph series
volume 37 |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis Inhaltstext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called "first order approach" which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis |
---|---|
Beschreibung: | Literaturverzeichnis: Seite 147-150 |
Beschreibung: | vi, 152 Seiten Diagramme 26 cm |
ISBN: | 9781470442507 978-1-4704-4250-7 |