Elliptic boundary value problems with fractional regularity data the first order approach

In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Amenta, Alex (VerfasserIn)
Körperschaft: Université de Montréal Centre de recherches mathématiques (Herausgebendes Organ)
Weitere Verfasser: Auscher, Pascal (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2018
Schriftenreihe:CRM monograph series volume 37
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called "first order approach" which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis
Beschreibung:Literaturverzeichnis: Seite 147-150
Beschreibung:vi, 152 Seiten
Diagramme
26 cm
ISBN:9781470442507
978-1-4704-4250-7