Stochastic linear programming with a distortion risk constraint

Linear optimization problems are investigated whose parameters are uncertain. We apply coherent distortion risk measures to capture the violation of restrictions. Such a model turns out to be appropriate for many applications and, principally, for the mean-risk portfolio selection problem. Each risk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bazovkin, Pavel (VerfasserIn)
Weitere Verfasser: Mosler, Karl C. (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Köln Univ., Seminar für Wirtschafts- und Sozialstatistik 2011
Schriftenreihe:Discussion papers in statistics and econometrics 2011,6
Schlagworte:
Online Zugang:http://www.wisostat.uni-koeln.de/Forschung/Papers/ORaTR-DiscPaper.pdf
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linear optimization problems are investigated whose parameters are uncertain. We apply coherent distortion risk measures to capture the violation of restrictions. Such a model turns out to be appropriate for many applications and, principally, for the mean-risk portfolio selection problem. Each risk constraint induces an uncertainty set of coefficients, which comes out to be a weighted-mean trimmed region. We consider a problem with a single constraint. Given an external sample of the coefficients, the uncertainty set is a convex polytope that can be exactly calculated. If the sample is i.i.d. from a general probability distribution, the solution of the stochastic linear program (SLP) is a consistent estimator of the SLP solution with respect to the underlying probability. An efficient geometrical algorithm is proposed to solve the SLP. -- Robust optimization ; data depth ; weighted-mean trimmed regions ; central regions ; coherent risk measure ; spectral risk measure
Beschreibung:24 S. : graph. Darst,
Format:Acrobat Reader