Predicting extreme VaR nonparametric quantile regression with refinements from extreme value theory

This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%) condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schaumburg, Julia (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Berlin SFB 649, Economic Risk 2010
Schriftenreihe:SFB 649 discussion paper 2010,009
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%) conditional quantiles of index return distributions. For extreme (0.1%) quantiles, where particularly few data points are available, we propose to combine nonparametric quantile regression with extreme value theory. The out-of-sample forecasting performance of our methods turns out to be clearly superior to different specifications of the Conditionally Autoregressive VaR (CAViaR) models. -- Value at Risk ; nonparametric quantile regression ; risk management ; extreme value theory ; monotonization ; CAViaR
Beschreibung:25 S.
graph. Darst.