<<A>> blocking and regularization approach to high dimensional realized covariance estimation

We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hautsch, Nikolaus (VerfasserIn)
Weitere Verfasser: Kyj, Lada M. (VerfasserIn), Oomen, Roel C. A. (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Berlin SFB 649, Economic Risk 2009
Schriftenreihe:SFB 649 discussion paper 2009,049
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven grouping of assets of similar trading frequency ensures the reduction of data loss due to refresh time sampling. In an extensive simulation study mimicking the empirical features of the S&P 1500 universe we show that the &#x2019;RnB&#x2019; estimator yields efficiency gains and outperforms competing kernel estimators for varying liquidity settings, noise-to-signal ratios, and dimensions. An empirical application of forecasting daily covariances of the S&P 500 index confirms the simulation results. -- covariance estimation ; blocking ; realized kernel ; regularization ; microstructure ; asynchronous trading
Beschreibung:29 S.
graph. Darst.