Gradient flows in metric spaces and in the space of probability measures
Looking at the theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure, this text covers gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance and g...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Basel ; Boston ; Berlin
Birkhäuser
2008
|
Ausgabe: | Second Edition |
Schriftenreihe: | Lectures in mathematics ETH Zürich
|
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Looking at the theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure, this text covers gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance and gradient flows in metric spaces. |
---|---|
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | vii, 334 Seiten |
ISBN: | 9783764387211 978-3-7643-8721-1 |