Spherically symmetric Stefan problem with the Gibbs-Thomson law at the moving boundary

Abstract: "This paper deals with the spherically symmetric Stefan problem in three space dimensions. The melting temperature satisfies the Gibbs-Thomson law. The solution is obtained as a limit of solutions of similar problems containing a small additional kinetic term in the melting temperatur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Götz, Ivan G. (VerfasserIn)
Weitere Verfasser: Primicerio, Mario (VerfasserIn)
Format: UnknownFormat
Sprache:ger
Veröffentlicht: München 1996
Schriftenreihe:Technische Universität <München>: TUM-MATH 9603
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract: "This paper deals with the spherically symmetric Stefan problem in three space dimensions. The melting temperature satisfies the Gibbs-Thomson law. The solution is obtained as a limit of solutions of similar problems containing a small additional kinetic term in the melting temperature. Under some structural assumptions we show that the phase- change boundary has at most one discontinuity point t=T₀ (see the corresponding result for the planar Stefan problem in the paper of Götz & Zaltzman (1992)). In the one-phase problem the discontinuity point always exists. At the time T₀ the whole solid phase melts instantaneously. We study also the asymptotical stability (t -> [infinity]) of stationary solutions satisfying boundary conditions of thermostat type."
Beschreibung:31 S.
graph. Darst.