˜Aœ self-adaptive multilevel finite element method for the stationary Schrödinger equation in three space dimensions

Abstract: "An error controlled finite element method (FEM) for solving stationary Schrödinger equations in three space dimensions is proposed. The method is based on an adaptive space discretization into tetrahedra and local polynomial basis functions of order p = 1-5 defined on these tetrahedr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ackermann, Jörg (VerfasserIn)
Weitere Verfasser: Erdmann, Bodo (VerfasserIn), Roitzsch, Rainer (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Berlin Konrad-Zuse-Zentrum für Informationstechnik 1994
Schriftenreihe:Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1994,10
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract: "An error controlled finite element method (FEM) for solving stationary Schrödinger equations in three space dimensions is proposed. The method is based on an adaptive space discretization into tetrahedra and local polynomial basis functions of order p = 1-5 defined on these tetrahedra. According to a local error estimator the triangulation is automatically adapted to the solution. Numerical results for standard problems appearing in vibrational motion and molecular structure calculations are presented and discussed. Relative precisions better than 1e-8 are obtained. For equilateral H₃++ the adaptive FEM turns out to be superior to global basis set expansions in the literature. Our precise FEM results exclude in a definite manner the stability or metastability of equilateral H₃++ in its groundstate."
Beschreibung:19 S.
graph. Darst.