˜Aœ posteriori error estimates for elliptic problems in two and three space dimensions

Abstract: "Let u [element of] H be the exact solution of a given self-adjoint elliptic boundary value problem, which is approximated by some u [element of] S, S being a suitable finite element space. Efficient and reliable a posteriori estimates of the error [parallel] u - u, measuring the (loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bornemann, Folkmar (VerfasserIn)
Weitere Verfasser: Erdmann, Bodo (VerfasserIn), Kornhuber, Ralf (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Berlin Konrad-Zuse-Zentrum für Informationstechnik 1993
Schriftenreihe:Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1993,29
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract: "Let u [element of] H be the exact solution of a given self-adjoint elliptic boundary value problem, which is approximated by some u [element of] S, S being a suitable finite element space. Efficient and reliable a posteriori estimates of the error [parallel] u - u, measuring the (local) quality of u, play a crucial role in termination criteria and in the adaptive refinement of the underlying mesh. A well-known class of error estimates can be derived systematically by localizing the discretized defect problem using domain decomposition techniques. In the present paper, we provide a guideline for the theoretical analysis of such error estimates. We further clarify the relation to other concepts. Our analysis leads to new error estimates, which are specially suited to three space dimensions
The theoretical results are illustrated by numerical computations.
Beschreibung:24 S.