How major league baseball teams are using data science and deep learning for to better predict outcomes and game strategy
Sports analytics today is more than a matter of analyzing box scores and play-by-play statistics. Faced with detailed on-field or on-court data from every game, sports teams face challenges in data management, data engineering, and analytics. Thomas Miller details the challenges faced by a Major Lea...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Online |
Sprache: | eng |
Veröffentlicht: |
Erscheinungsort nicht ermittelbar
O'Reilly Media, Inc.
2019
Sebastopol, CA O'Reilly Media Inc. |
Ausgabe: | 1st edition |
Schlagworte: | |
Online Zugang: | https://learning.oreilly.com/library/view/-/0636920421467/?ar |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sports analytics today is more than a matter of analyzing box scores and play-by-play statistics. Faced with detailed on-field or on-court data from every game, sports teams face challenges in data management, data engineering, and analytics. Thomas Miller details the challenges faced by a Major League Baseball team as it sought competitive advantage through data science and deep learning. |
---|---|
Beschreibung: | 1 Online-Ressource (1 video file, approximately 32 min.) |