Symmetry via maximum principles for nonlocal nonlinear boundary value problems
Dissertation, Johann Wolfgang Goethe-Universität Frankfurt am Main, 2015
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Frankfurt am Main
2015
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dissertation, Johann Wolfgang Goethe-Universität Frankfurt am Main, 2015 In the qualitative analysis of solutions of partial differential equations, many interesting questions are related to the shape of solutions. In particular, the symmetries of a given solution are of interest. One of the first more general results in this direction was given in 1979 by Gidas, Ni and Nirenberg... The main tool in proving this symmetry and monotonicity result is the moving plane method. This method, which goes back to Alexandrov’s work on constant mean curvature surfaces in 1962, was introduced in 1971 by Serrin in the context of partial differential equations to analyze an overdetermined problem ... |
---|---|
Beschreibung: | 1 CD-R (ix, 110, VIII Seiten) |