Electrophysiological characterization of surviving dopaminergic neurons in a mouse model of Parkinson's disease

Frankfurt (Main), Univ., Diss., 2013

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Prinz, Alexander
Format: UnknownFormat
Sprache:eng
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Frankfurt (Main), Univ., Diss., 2013
The midbrain DA system comprising dopamine (DA) neurons of the substantia nigra (SN) and the ventral tegmental area (VTA) is involved in various brain functions, including voluntary movement and the encoding and prediction of behaviorally relevant stimuli. In Parkinsonʼs disease (PD), a progressive degeneration of particularly vulnerable SN DA neurons causes a progressive DA depletion of striatal projection sites. As a consequence, motor symptoms such as tremor, hypokinesia and rigidity appear once about 50 % to 70 % of SN DA neurons have been lost. Under physiological conditions, SN DA neurons can encode behaviorally salient events and coordinated movements through tonic and phasic activity and correlated striatal DA release. Burst-activity mediates a phasic, supralinear rise of striatal DA levels and allows to activate coordinated movements via modulation of corticostriatal signals. In the present dissertation project, pathophysiological adaptations of surviving SN DA neurons after a partial degeneration of the nigrostiatal system have been studied using a 6-hydroxydopamine mouse model of PD. Combining in vivo retrograde tracing techniques with in vitro whole-cell patch-clamp recordings, multifluorescent immunolabeling and confocal microscopy allowed an unambiguous correlation of electrophysiological phenotypes, anatomical positions and neurochemical phenotypes of recorded neurons on a single-cell level. In vitro, neuronal activity of SN DA neurons is characterized by spontaneous, slow pacemaker activity of 1 to 10 Hz and a high degree of spike-timing precision. In vitro current-clamp recordings of surviving SN DA neurons using acute brain slice preparations after a partial, PD-like degeneration of the nigrostriatal DA system showed a significant perturbation of spontaneous pacemaker activity, mirrored by a decreased spike-timing precision compared to controls. Selective pharmacology and whole-cell voltage-clamp recordings served to identify calciumactivated SK channels as molecular effectors of a perturbated pacemaker activity of surviving SN DA neurons. SK channels and have been shown to critically contribute to the spike-timing precision of SN DA neurons. Consistently, in vitro current-clamp recordings after pharmacological blockade of SK channels in vitro caused a significant decrease of spike-timing precision, occluding previously observed differences between surviving SN DA neurons and controls. In addition to in vitro patch-clamp recordings, extracellular single-unit recordings in anaesthetized animals in vivo served to study surviving SN DA neurons embedded in an intact neuronal network after a partial, PD-like degeneration of the nigrostriatal DA system. Combining in vivo single-unit recordings, juxtacellular neurobiotin labeling and multifluorescent immunohistochemistry allowed to directly correlate electrophysiological and neurochemical phenotypes as well as anatomical positions on a single-cell level. In vivo, surviving SN DA neurons showed a significant decrease of spike-timing precision as reflected by an increased irregularity and an augmented burst activity compared to controls. The present dissertation project provided a unique combination of a neurotoxicological PD mouse model, retrograde tracing techniques and in vitro as well as in vivo electrophysiologiy, allowing to unambiguously correlate electrophysiological adaptations, projection-specific anatomical positions and neurochemical phenotypes of SN DA neurons after a partial degeneration of the nigrostriatal system. Surviving SN DA neurons exhibited a significant deficit of SK channel activity after a partial degeneration of the nigrostriatal DA system. In consequence of a diminished SK channel activity observed in vitro, surviving SN DA neurons exhibited and enhanced burst activity in vivo, providing a plausible mechanism to compensate a striatal DA depletion.
Beschreibung:1 CD-R
12 cm
Beil. ([1] Bl.)