Estimating credit risk parameters using ensemble learning methods an empirical study on loss given default

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of credit risk
1. Verfasser: Sun, Han Sheng (VerfasserIn)
Weitere Verfasser: Jin, Zi (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: September 2016
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
A three-factor hazard rate model for single-name credit default swap pricing 2022 Zhong, Yangfan
Stressed distance to default and default risk 2022 Guo, Nan
Generalized additive modeling of the credit risk of Korean personal bank loans 2022 Kim, Young Ah
Estimating correlation parameters in credit portfolio models under time-varying and nonhomogeneous default probabilities 2022 Jakob, Kevin
How a credit run affects asset correlation 2022 Imanto, Christopher Paulus
Repo haircuts and economic capital : a theory of repo pricing 2022 Lou, Wujiang
An effective credit rating method for corporate entities using machine learning 2022 Sun, Hansheng
Stressing of migration matrixes for International Financial Reporting Standard 9 and Internal Capital Adequacy Assessment Process Calculations 2022 Witzany, Jiří
Risks of long-term auto loans 2022 Guo, Zhengfeng
Sovereign probabilities of default in the euro area 2022 Jobst, Rainer
Dynamic initial margin estimation based on quantiles of Johnson distributions 2022 McWalter, Thomas A.
Merton's model with recovery risk 2022 Cohen, Albert
Does economic policy uncertainty exacerbate corporate financial distress risk? 2021 Sun, Jie
An interpretable Comprehensive Capital Analysis and Review (CCAR) neural network model for portfolio loss forecasting and stress testing 2021 Chen, Heng Z.
Ensemble methods for credit scoring of Chinese peer-to-peer loans 2021 Cao, Wei
Forecasting consumer credit recovery failure : classification approaches 2021 Kim, Hyeongjun
Three ways to improve the systemic risk analysis of the Central and Eastern European region using SRISK and CoVaR 2021 Karaś, Marta
A survey of machine learning in credit risk 2021 Breeden, Joseph L.
Customer churn prediction for commercial banks using customer-value-weighted machine learning models 2021 Wu, Zongxiao
Agency problems in multinational banks : does parent complexity affect the risk-taking of subsidiaries? 2021 Gajewski, Krzysztof
Alle Artikel auflisten