Eigenvalue order statistics for random Schrödinger operators with doubly-exponential tails
We consider random Schrödinger operators of the form Delta+zeta , where D is the lattice Laplacian on Zd and Delta is an i.i.d. random field, and study the extreme order statistics of the eigenvalues for this operator restricted to large but finite subsets of Zd. We show that for sigma with a doubly...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Berlin
Weierstraß-Inst. für Angewandte Analysis und Stochastik Leibniz-Inst. im Forschungsverbund Berlin e. V.
2013
|
Schriftenreihe: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik
1873 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider random Schrödinger operators of the form Delta+zeta , where D is the lattice Laplacian on Zd and Delta is an i.i.d. random field, and study the extreme order statistics of the eigenvalues for this operator restricted to large but finite subsets of Zd. We show that for sigma with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class. The corresponding eigenfunctions are exponentially localized in regions where zeta takes large, and properly arranged, values. A new and self-contained argument is thus provided for Anderson localization at the spectral edge which permits a rather explicit description of the shape of the potential and the eigenfunctions. Our study serves as an input into the analysis of an associated parabolic Anderson problem. |
---|---|
Beschreibung: | Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden |
Beschreibung: | 34, [2] S. |