A study of value-at-risk based on M-estimators of the conditional heteroscedastic models

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting
1. Verfasser: Iqbal, Farhat (VerfasserIn)
Weitere Verfasser: Mukherjee, Kanchan (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2012
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Forecasting with micro panels : the case of health care costs 2017 Fiebig, Denzil G.
Detecting and predicting economic accelerations, recessions, and normal growth periods in real-time 2017 Proano, Christian
Forecasting the US term structure of interest rates using nonparametric functional data analysis 2017 Caldeira, João F.
Forecasting aggregates with disaggregate variables : does boosting help to select the most relevant predictors? 2017 Zeng, Jing
Stochastic multivariate mixture covariance model 2017 So, Mike Ka-pui
Revisiting targeted factors 2017 Fosten, Jack
Validating policy-induced economic change using sequential general equilibrium SAMs 2017 Cardenete, M. Alejandro
Understanding algorithm aversion : when is advice from automation discounted? 2017 Prahl, Andrew
The importance of time‐varying volatility and country interactions in forecasting economic activity 2017 Trypsteen, Steven
Forecast robustness in macroeconometric models 2017 Bårdsen, Gunnar
Benchmark forecast and error modeling 2017 Chen, Zhao-Guo
Forecast combination for euro area inflation : a cure in times of crisis? 2017 Hubrich, Kirstin
Short‐term stock price prediction based on limit order book dynamics 2017 An, Yang
Forecasting intraday S&P 500 index returns : a functional time series approach 2017 Shang, Han Lin
What can we learn from the fifties? 2017 Gouret, Fabian
Mortality effects of temperature changes in the United Kingdom 2017 Seklecka, Malgorzata
On assessing the relative performance of default predictions 2017 Krämer, Walter
Forecasting ability of a periodic component extracted from large-cap index time series 2017 O'Shea, Michael J.
Ensemble forecasting for complex time series using sparse representation and neural networks 2017 Yu, Lean
Bayesian forecasting for time series of categorical data 2017 Angers, Jean-François
Alle Artikel auflisten