Modellbasierte Mehrzieloptimierung mit neuronalen Netzen und Evolutionsstrategien

Ilmenau, Techn. Univ., Diss., 2004

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Meyer, Dany (VerfasserIn)
Weitere Verfasser: Puta, Horst (BerichterstatterIn), Brauer, Wilfried (BerichterstatterIn), Möller, Ralf (BerichterstatterIn)
Format: UnknownFormat
Sprache:ger
Veröffentlicht: 2004
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ilmenau, Techn. Univ., Diss., 2004
Heute sind Aufgaben der Optimierung aus keinem Bereich der modernen Technik mehr wegzudenken. Dabei zeigt sich immer häufiger, daß es sich um komplexe Optimierungsprobleme handelt, die zum einen sich widersprechende Ziele und zum anderen eine große Anzahl von unterschiedlichen Randbedingungen enthalten. Zusätzlich besteht der Anspruch, menschliches Expertenwissen in die Lösung dieser Probleme unkompliziert und transparent einzubringen und für die Problemlösung verwendbar zu machen. Oft sind die Abhängigkeiten innerhalb der zu optimierenden Prozesse mathematisch nicht mehr oder nur sehr unvollkommen formulierbar, liegen in Form von Regelwissen oder Beispielsituationen vor und müssen daher mit Hilfe von geeigneten Modellen geschätzt werden. Diese Anforderungen stellen die Entwickler von modernen Modellbildungs- und Optimierungsmethoden vor große Herausforderungen, die in den meisten Fällen nicht mehr allein mit Methoden der klassischen Mathematik lösbar sind. Vielmehr erfordern sie den zusätzlichen Einsatz lernfähiger Methoden, die durch das Ausnutzen von Synergien zwischen den klassischen und natur-analogen Verfahren zur Entwicklung leistungsfähiger hybrider Systeme führen. - In dieser Arbeit wird ein mehrstufiges Verfahren zur modellbasierten Mehrzieloptimierung vorgestellt, das sich aus der datengetriebenen Prozessmodellbildung zur Berechnung der Zielfunktionen und Randbedingungen, ihrer multikriteriellen Optimierung sowie einem interaktiven Decision-Making-Modul zusammensetzt. Die Besonderheit des hier entwickelten Ansatzes besteht darin, daß die bei der Optimierung generierte, näherungsweise pareto-optimale Lösungsmenge nach Abschluß der Optimierung durch Neuronale Netze modelliert wird und so einen interpolierenden Zugriff auf ihre Elemente sowie die Extraktion von Wissen über die Zusammenhänge zwischen den Prozessgrößen im näherungsweise pareto-optimalen Bereich gestatten. Neben der Darstellung einer praxistauglichen Gesamtmethodik stellen Erweiterungen im Bereich der Theorie Evolutionärer Algorithmen in Form des Lernens der Evolutionsrichtung während der Optimierung einen weiteren Schwerpunkt dar. Die zusätzliche Kombination mit einem gradientenbasierten Optimierungsalgorithmus machen den Ansatz zu einem Multi-Hybrid-System, das sich durch sehr gute Konvergenzeigenschaften und eine hohe Qualität der generierten Lösungen auszeichnet.Beispielhaft wird eine mit diesem Ansatz entwickelte und im industriellen Einsatz befindliche Applikation zur modellbasierten Rezepturoptimierung in der Tierfutterindustrie beschrieben.Ziel der Arbeit ist es, einen lernfähigen, multi-hybriden multikriteriellen Evolutionären Algorithmus zu entwickeln, der seine Überlegenheit durch das effiziente Ausnutzen von Synergien zwischen den einzelnen Verfahren zeigt, sowie eine praxisbezogene Methodik zu erarbeiten, die es dem Ingenieur gestattet, rezepturgesteuerte Produktionsprozesse - angefangen von der Datenerfassung und Versuchsplanung, über die Prozessmodellierung bis hin zur multikriteriellen Optimierung - effizienter zu gestalten.
Beschreibung:Parallel als Online-Ausg. erschienen unter der Adresse http://www.db-thueringen.de/servlets/DocumentServlet?id=2890
Beschreibung:IX, 177 Bl.
graph. Darst.