SP-350-2: Machine Learning Driven Drift Capacity Model for Reinforced Concrete Walls

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACI Virtual Concrete Convention (29.03.-02.04.2020 : Online) The concrete industry in the era of artificial intelligence
1. Verfasser: Aladsani, Muneera (VerfasserIn)
Weitere Verfasser: Burton, Henry (VerfasserIn), Abdullah, Saman (VerfasserIn), Wallace, John (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2022
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
SP-350-3: State of the Art on Self-Healing Capacity of Cementitious Materials Based on Data re Mining Strategies 2022 Gupta, Shashank
SP-350-2: Machine Learning Driven Drift Capacity Model for Reinforced Concrete Walls 2022 Aladsani, Muneera
SP-350-1: Damage Detection in Concrete Bridge T girders using 3D Finite Element Simulations Trained by Artificial Neural Network 2022 Abouelleil, AlaaEldin
SP-350-6: Deep Neural Network to Predict Fire Resistance of FRP-Strengthened Beams 2022 Bhatt, P. P.
SP-350-7: Artificial Neural Network to Predict Bond Strength of Deformed Bars in Concrete 2022 Degtyarev, Vitaliy V.
SP-350-9: An Intelligently Designed Al for Structural Health Monitoring of a Reinforced Concrete Bridge 2022 Locke, William R.
SP-350-10: Response Prediction of Ultra-High-Performance Concrete Beams using Machine Learning 2022 Solhmirzaei, Roya
SP-350-12: Prediction of Shear Strength of One-Way Slabs Voided by Circular Paper Tubes using Artificial Intelligence 2022 Mansouri, Author: Iman
SP-350-11: Regression-Based Surrogate Models for the Probabilistic Study of Fire Exposed Composite Structures Considering Tensile Membrane Action 2022 Chaudhary, Ranjit Kumar
SP-350-13: The Use of Machine Learning Algorithms and loT Sensor Data for Concrete Performance Testing and Analysis 2022 Fahim, Andrew
SP-350-15: Artificial Neural Network Utilization for Nondestructive Testing and Evaluation of Concrete Structures 2022 Zatar, Wael A.
SP-350-14: Artificial Intelligence for Real-Time Crack Detection of Ultra-High-Performance Concrete 2022 Wang, Jung
SP-350-5: Review of Artificial Neural Networks and A New Feed-Forward Network for Anchorage Analysis in Cracked Concrete 2022 Almeida, Salvio A. Jr.
SP-350-4: Development of Fault-Detection ANNs for Structural Damage Predictions 2022 AlHamaydeh, Mohammad H.
SP-350-8: Predieting the Compressive Strength Based in NDT Using Deep Learning 2022 Guzmän-Torres, Jose A.
Alle Artikel auflisten