GPTuneBand: Multi-task and Multi-fidelity Autotuning for Large-scale High Performance Computing Applications
Gespeichert in:
Veröffentlicht in: | SIAM Conference on Parallel Processing for Scientific Computing (20. : 2022 : Online) Twentieth SIAM Conference on Parallel Processing for Scientific Computing (PP22) |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Pages: | 22 |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2022
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
Tuning Spectral Element Preconditioners for Parallel Scalability on GPUS | 2022 | Phillips, Malachi |
Prediction of Optimal Solvers for Sparse Linear Systems Using Deep Learning | 2022 | Funk, Yannick |
Parallel Minimum Spanning Forest Computation usıng Sparse Matrix Kernels | 2022 | Baer, Tim |
Performance of Low Synchronization Orthogonalization Methods in Anderson Accelerated Fixed Point Solvers | 2022 | Lockhart, Shelby |
Batched Second-Order Adjoint Sensitivity for Reduced Space Methods | 2022 | Pacaud, Francois |
GPTuneBand: Multi-task and Multi-fidelity Autotuning for Large-scale High Performance Computing Applications | 2022 | Zhu, Xinran |
Deep Learning and Spectral Embedding for Graph Partitioning | 2022 | Gatti, Alice |