Good for Children, Good for All?

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European Conference on Information Retrieval (46. : 2024 : Glasgow) Advances in information retrieval ; Part 4
1. Verfasser: Landoni, Monica (VerfasserIn)
Weitere Verfasser: Huibers, Theo (VerfasserIn), Murgia, Emiliana (VerfasserIn), Pera, Maria Soledad (VerfasserIn)
Pages:4
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2024
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Learning to Jointly Transform and Rank Difficult Queries 2024 Bigdeli, Amin
Towards Automated End-to-End Health Misinformation Free Search with a Large Language Model 2024 Pradeep, Ronak
Optimizing BERTopic: Analysis and Reproducibility Study of Parameter Influences on Topic Modeling 2024 Borčin, Martin
Reproducibility Analysis and Enhancements for Multi-aspect Dense Retriever with Aspect Learning 2024 Bi, Keping
Query Generation Using Large Language Models: A Reproducibility Study of Unsupervised Passage Reranking 2024 Rau, David
Evaluating the Explainability of Neural Rankers 2024 Pandian, Saran
A Study of Pre-processing Fairness Intervention Methods for Ranking People 2024 Rus, Clara
The Impact of Differential Privacy on Recommendation Accuracy and Popularity Bias 2024 Müllner, Peter
Responsible Opinion Formation on Debated Topics in Web Search 2024 Rieger, Alisa
Estimating Query Performance Through Rich Contextualized Query Representations 2024 Ebrahimi, Sajad
Context-Aware Query Term Difficulty Estimation for Performance Prediction 2024 Saleminezhad, Abbas
Measuring Item Fairness in Next Basket Recommendation: A Reproducibility Study 2024 Liu, Yuanna
Ranking Distance Metric for Privacy Budget in Distributed Learning of Finite Embedding Data 2024 Papadopoulos, Georgios
Experiments in News Bias Detection with Pre-trained Neural Transformers 2024 Menzner, Tim
Good for Children, Good for All? 2024 Landoni, Monica
Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? 2024 Lyu, Lijun
Navigating the Thin Line: Examining User Behavior in Search to Detect Engagement and Backfire Effects 2024 Cau, Federico Maria
Recommendation Fairness in eParticipation: Listening to Minority, Vulnerable and NIMBY Citizens 2024 Alonso-Cortés, Marina
SoftQE: Learned Representations of Queries Expanded by LLMs 2024 Pimpalkhute, Varad
Performance Comparison of Session-Based Recommendation Algorithms Based on GNNs 2024 Shehzad, Faisal
Alle Artikel auflisten