Distributed Deep Learning on Data Systems: A Comparative Analysis of Approaches

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:VLDB (47. : 2021 : Kopenhagen; Online) 47th International Conference on Very Large Data Bases 2021 ; Part 3 of 4
1. Verfasser: Zhang, Yuhao (VerfasserIn)
Weitere Verfasser: Mcquillan, Frank (VerfasserIn), Jayaram, Nandish (VerfasserIn), Kak, Nikhil (VerfasserIn), Khanna, Ekta (VerfasserIn), Kislal, Orhan (VerfasserIn), Valdano, Domino (VerfasserIn), Kumar, Arun (VerfasserIn)
Pages:47
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Automating Incremental Graph Processing with Flexible Memoization 2021 Gong, Shufeng
In-Network Support for Transaction Triaging 2021 Jepsen, Theo
GeCo: Quality Counterfactual Explanations in Real Time 2021 Schleich, Maximilian
On the algebra of data sketches 2021 Lemiesz, Jakub
Distributed Deep Learning on Data Systems: A Comparative Analysis of Approaches 2021 Zhang, Yuhao
Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation 2021 Zhang, Yinggiang
GraphMineSuite: Enabling High-Performance and Drogrammabile Graph Mining Algorithms with Set Algebra 2021 Besta, Maciej
ThunderRW: An In-Memory Graph Random Walk Engine 2021 Sun, Shixuan
Flow-Loss: Learning Cardinality Estimates That Matter 2021 Negi, Parimarjan
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition 2021 Li, Yang
Constructing and Analyzing the LSM Compaction Design Space 2021 Sarkar, Subhadeep
Errata for "Teseo and the Analysis of Structural Dynamic Graph" 2021 Leo, Dean De
Real-World Trajectory Sharing with Local Differential Privacy 2021 Cunningham, Teddy
Towards an Optimized GROUP BY Abstraction for Large-Scale Machine Learning 2021 Li, Side
Accelerating Approximate Aggregation Queries with Expensive Predicates 2021 Kang, Daniel
A four-dimensional Analysis of Partitioned Approximate Filters 2021 Schmidt, Tobias
CHEF: A Cheap and Fast Pipeline for Iteratively Cleaning Label Uncertainties 2021 Wu, Yinjun
Massively Parallel Algorithms for Personalized PageRank 2021 Hou, Guanhao
How to Design Robust Algorithms using Noisy Comparison Oracle 2021 Addanki, Raghavendra
Unconstrained Submodular Maximization with Modular Costs: Tight Approximation and Application to Profit Maximization 2021 Jin, Tianyuan
Alle Artikel auflisten