LiDAR system applications for improving condition monitoring and asset management of railways

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Condition Monitoring and Asset Management (17. : 2021 : Online) 17th International Conference on Condition Monitoring and Asset Management (CM 2021)
1. Verfasser: Ahmadian, M. (VerfasserIn)
Pages:17
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Features of gearbox diagnostics on the basis of their vibratio, amplitude-frequency analysis 2021 Balitsky, F.
Tool condition monitoring based on vibration signal from an on-rotor sensor in CNC turning process 2021 Li, C.
The development of condition monitoring diagnostics for prescribed actions using a combination of artificial intelligence, machine learning algorithms and a modified approach to FMECA 2021 Shorten, D.
On-body sensing systems: human motion capture for health monitoring 2021 Haratian, R.
Monitoring the kinematics of walking and running gait after total knee replacement using a generation of kinematic retaining prosthetic knee implant 2021 Noroozi, S.
CNN-based early classification of rotating machinery fault diagnosis 2021 Yang, D.
Interference of variable frequency (VYFD) on rotating machinery fault diagnosis 2021 Ganeriwala, S.
Development of magnetic eddy current sensor for online corrosion monitoring of ferromagnetic pipelines 2021 Rukhshinda, W.
HOIS guidance for UAV-based external remote visual inspection 2021 Burch, S.
Validating a deep-learning model for atrial fibrillation detection 2021 Kareem, M.
A smart sleep apnoea detection service 2021 Barika, R.
Detection of anomalies on signals during aircraft engine tests: methodological comparison between historical, statistical and deep-learning approaches 2021 Rotrou, Y.
Confounding factors effect on guided wave ultrasonic testing (GWUT) 2021 Samuel, O. C.
Optimisation of cockpit displays and controls using touch displays 2021 Greshnikov, I.
Short-term solar radiation prediction in Huddersfield based on the feed-forward neural network 2021 Wang, Z.
Enhancing bearing signature using minimum entropy decomposition to determine bearing faults in a permanent magnet motor 2021 Ganeriwala, S.
Bearing fault diagnosis with non-stationary speed and load conditions 2021 Berrada, S.
Wind turbine blades fault detection using system identification-based transmissibility analysis 2021 Wang, X.
Equine IRT 2021 Hall, E.
Safe thermographic severity extrapolation in low-energy circuits 2021 Manning-Ohren, D.
Alle Artikel auflisten