Bounding the Width of Neural Networks Via Coupled Initialization a Worst Case Analysis

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Machine Learning (39. : 2022 : Baltimore, Md.; Online) International Conference on Machine Learning (ICML 2022) ; Part 20 of 33
1. Verfasser: Munteanu, Alexander (VerfasserIn)
Weitere Verfasser: Omlor, Simon (VerfasserIn), Song, Zhao (VerfasserIn), Woodruff, David (VerfasserIn)
Pages:2022
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2023
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Rethinking Fano’s Inequality in Ensemble Learning 2023 Morishita, Terufumi
Generalized Beliefs for Cooperative AI 2023 Muglich, Darius
Overcoming Oscillations in Quantization-Aware Training 2023 Nagel, Markus
Strategic Representation 2023 Nair, Vineet
Variational Inference for Infinitely Deep Neural Networks 2023 Nazaret, Achille
On Transportation of Mini-Batches: A Hierarchical Approach 2023 Nguyen, Khai
Power-Law Escape Rate of SGD 2023 Mori, Takashi
Feature and Parameter Selection in Stochastic Linear Bandits 2023 Moradipari, Ahmadreza
CtrlFormer: Learning Transferable State Representation for Visual Control Via Transformer 2023 Mu, Yao Mark
Constants Matter: The Performance Gains of Active Learning 2023 Mussmann, Stephen O.
Bounding the Width of Neural Networks Via Coupled Initialization a Worst Case Analysis 2023 Munteanu, Alexander
The Importance of Non-Markovianity in Maximum State Entropy Exploration 2023 Mutti, Mirco
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning 2023 Myung, Sanghoon
Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models 2023 Nava, Elvis
Tight and Robust Private Mean Estimation with Few Users 2023 Narayanan, Shyam
Sublinear-Time Clustering Oracle for Signed Graphs 2023 Neumann, Stefan
Improved Regret for Differentially Private Exploration in Linear MDP 2023 Ngo, Dung Daniel T.
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling 2023 Nguyen, Tung
SpeqNets: Sparsity-Aware Permutation-Equivariant Graph Networks 2023 Morris, Christopher
DNNR: Differential Nearest Neighbors Regression 2023 Nader, Youssef
Alle Artikel auflisten