Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs
Gespeichert in:
Veröffentlicht in: | MICCAI MAD Workshop (1. : 2022 : Singapur; Online) Medical applications with disentanglements |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2023
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
Disentangling Factors of Morphological Variation in an Invertible Brain Aging Model | 2023 | Wilms, Matthias |
Training β-VAE by aggregating a learned Gaussian posterior with a decoupled decoder | 2023 | Li, Jianning |
Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations | 2023 | Montenegro, Helena |
Instance-Specific Augmentation of Brain MRIs with Variational Autoencoders | 2023 | Middleton, Jon |
Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs | 2023 | Weber, Tobias |
Low-Rank and Sparse Metamorphic Autoencoders for Unsupervised Pathology Disentanglement | 2023 | Uzunova, Hristina |
A Study of Representational Properties of Unsupervised Anomaly Detection in Brain MRI | 2023 | Das, Ayantika |
Applying disentanglement in the medical domain : an introduction for the MAD workshop | 2023 | Fragemann, Jana |
HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information | 2023 | Liu, Xiao |