Measuring Bias in Multimodal Models: Multimodal Composite Association Score

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIAS (4. : 2023 : Dublin) Advances in bias and fairness in information retrieval
1. Verfasser: Mandal, Abhishek (VerfasserIn)
Weitere Verfasser: Leavy, Susan (VerfasserIn), Little, Suzanne (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2023
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Measuring Bias in Multimodal Models: Multimodal Composite Association Score 2023 Mandal, Abhishek
Addressing Biases in the Texts Using an End-to-End Pipeline Approach 2023 Raza, Shaina
Evaluating Fairness Metrics 2023 Irfan, Zahid
Preserving Utility in Fair Top-k Ranking with Intersectional Bias 2023 Alimonda, Nicola
Mitigating Position Bias in Hotels Recommender Systems 2023 Li, Yinxiao
Improving Recommender System Diversity with Variational Autoencoders 2023 Borar, Sheetal
Bootless Application of Greedy Re-ranking Algorithms in Fair Neural Team Formation 2023 Loghmani, Hamed
Do You MIND? Reflections on the MIND Dataset for Research on Diversity in News Recommendations 2023 Vrijenhoek, Sanne
Utilizing Implicit Feedback for User Mainstreaminess Evaluation and Bias Detection in Recommender Systems 2023 Zhang, Kuanyi
Detecting and Measuring Social Bias of Arabic Generative Models in the Context of Search and Recommendation 2023 Harrag, Fouzi
A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations 2023 Kowald, Dominik
Understanding Search Behavior Bias in Wikipedia 2023 Scarone, Bruno
How Do You Feel? Information Retrieval in Psychotherapy and Fair Ranking Assessment 2023 Kumar, Vivek
What Are We Missing in Algorithmic Fairness? Discussing Open Challenges for Fairness Analysis in User Profiling with Graph Neural Networks 2023 Purificato, Erasmo
Alle Artikel auflisten