Environment-Aware Work Load Prediction in Edge Computing

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CCF International Conference on Service Science (16. : 2023 : Harbin) Service science
1. Verfasser: Ma, Xing (VerfasserIn)
Weitere Verfasser: Cai, Zhicheng (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2023
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
QoS Accurate Matching Algorithm Based on Service Resource Scheduling on Cloud Platform and Its Application 2023 Zhang, Xiaodong
Multi-round Collaborative Task Assignment Under the Edge Cloud in Mobile Crowdsourcing 2023 Zang, Xinxiao
A Dynamic Change Mechanism for Business Process in Science and Technology Service Domain 2023 Lu, Shuangyu
Ethereum Phishing Detection Based on Graph Structure and Transaction Sequence Features Fusion 2023 Zhang, Yanmei
Al Technology Adoption, Al Knowledge Integration and Al Product Development Performance 2023 Yin, Lingyun
Knowledge Graph Construction for Healthcare Services in Traditional Chinese Medicine 2023 Yi, Zhiwei
Enhancing IoT Service Interface Through AsyncAPI with Extensions 2023 Wang, Hai
A Simulation Model for Proactive Services: A Case Study on Evading Dangerous Areas for LNG Ship 2023 Shi, Yongpeng
Modeling Spatio-Temporal Distribution and Matching of Service Capacity and Customer Demands 2023 Xu, Huixin
User Multi-interest Collaboration for Service Recommendations 2023 Chen, Yi
Stock Market Prediction Based on BERT Embedding and News Sentiment Analysis 2023 Yang, Hanlin
Building Community Service Ecosystem Models 2023 Deng, Kunkun
LoCom: An Efficient Load-Balanced Concurrency Optimization Method for Bulk-Commodity Regulatory Systems 2023 Guo, Hengqi
Scheduling Workflow Instances to Servers and Serverless Functions in Cloud/Edge Data Centers 2023 Zhang, Jinquan
Environment-Aware Work Load Prediction in Edge Computing 2023 Ma, Xing
A Container Migration Method for Edge Environments Based on Malicious Traffic Detection 2023 Wang, Jing
Hardware-Software Co-design for Deep Neural Network Acceleration 2023 Wang, Yanwei
Multimodal Intent Recognition Based on Contrastive Learning 2023 Wu, Yuxuan
Multi-convolutional Attention Networks for Dialogue Q&A Extraction 2023 Zhu, Yuying
Chinese Medical Named Entity Recognition Based on Label Knowledge Enhancement 2023 Li, Shengyu
Alle Artikel auflisten