Federated Learning Vector Quantization

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESANN (29. : 2021 : Online) 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
1. Verfasser: Brinkrolf, J. (VerfasserIn)
Weitere Verfasser: Hammer, B. (VerfasserIn)
Pages:29
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Privacy-Preserving Kernel Computation For Vertically Partitioned Data 2021 Polato, M.
Decay Momentum for Improving Federated Learning 2021 Fernandes, M.
Lifelong Learning from Event-based Data 2021 Gryshchuk, V.
Transfer learning in Bayesian optimization for the calibration of a beam line in proton therapy 2021 Hamaide, V.
Improving Graph Variational Autoencoders with Multi-Hop Simple Convolutions 2021 Nascimento, E. J. Freitas do
Deep learning for graphs 2021 Bacciu, D.
Evolutionary Deep Multi-Task Learning 2021 Kramer, O.
Fourier-based Video Prediction through Relational Object Motion 2021 Mosbach, M.
Improved and Generalized Vine Line Detection on Aerial Images Using Asymmetrical Neural Networks and ML Subclassifiers 2021 Treboux, J.
Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis 2021 Lübbering, M.
End-to-end Keyword Spotting using Xception-1d 2021 Valles-Pérez, I.
Reservoir Computing by Discretizing ODEs 2021 Gallicchio, C.
Deep Echo State Networks for Functional Ambulation Categories Estimation 2021 Pedrelli, L.
Multiobjective Reinforcement Learning in Optimized Drug Design 2021 Abbasi, M.
Anomalous Cluster Detection in Large Networks with Diffusion-Percolation Testing 2021 Larroche, C.
Stochastic quartet approach for fast multidimensional scaling 2021 Lambert, P.
Federated Learning approach for SpectralClustering 2021 Hernández-Pereira, E.
Machine learning and data mining for urban mobility intelligence 2021 Come, E.
Supervised learning of convex piecewise linear approximations of optimization problems 2021 Duchesne, L.
Estimating Formulas for Model Performance Under Noisy Labels Using Symbolic Regression 2021 Khoo, F. S.
Alle Artikel auflisten