Cost-Efficient and Bias-Robust Sports Player Tracking by Integrating GPS and Video
Gespeichert in:
Veröffentlicht in: | International Workshop on Machine Learning and Data Mining for Sports Analytics (9. : 2022 : Grenoble) Machine learning and data mining for sports analytics |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2023
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
Shot Analysis in Different Levels of German Football Using Expected Goals | 2023 | Raudonius, Laurynas |
Discovering and Visualizing Tactics in a Table Tennis Game Based on Subgroup Discovery | 2023 | Duluard, Pierre |
Towards Expected Counter - Using Comprehensible Features to Predict CoUunterattacks | 2023 | Biermann, Henrik |
Evaluation of Creating Scoring Opportunities for Teammates in Soccer via Trajectory Prediction | 2023 | Teranishi, Masakiyo |
Let’s Penetrate the Defense: A Machine Learning Model for and Prediction Valuation of Penetrative Passes | 2023 | Rahimian, Pegah |
Cost-Efficient and Bias-Robust Sports Player Tracking by Integrating GPS and Video | 2023 | Kim, Hyunsung |
Predicting Tennis Serve Directions with Machine Learning | 2023 | Zhu, Ying |
Athlete Monitoring in Professional Road Cycling Using Similarity Search on Time Series Data | 2023 | Leeuw, Arie-Willem de |
Analyzing Passing Sequences for the Prediction of Goal-Scoring Opportunities | 2023 | McCarthy, Conor |