Differentiable Logics for Neural Network Training and Verification
Gespeichert in:
Veröffentlicht in: | Software verification and formal methods for ML-enabled autonomous systems |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2022
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
Formal Specification for Learning-Enabled Autonomous Systems | 2022 | Bensalem, Saddek |
NSV 2022 | 2022 | |
VPN: Verification of Poisoning in Neural Networks | 2022 | Sun, Youcheng |
CEG4N: Counter-Example Guided Neural Network Quantization Refinement | 2022 | Matos, João Batista P. |
MLTL Multi-type (MLTLM): A Logic for Reasoning About Signals of Different Types | 2022 | Hariharan, Gokul |
Neural Network Precision Tuning Using Stochastic Arithmetic | 2022 | Ferro, Quentin |
A Cascade of Checkers for Run-time Certification of Local Robustness | 2022 | Mangal, Ravi |
Differentiable Logics for Neural Network Training and Verification | 2022 | Ślusarz, Natalia |
FoMLAS 2022 | 2022 | |
Neural Networks in Imandra: Matrix Representation as a Verification Choice | 2022 | Desmartin, Remi |
Minimal Multi-Layer Modifications of Deep Neural Networks | 2022 | Refaeli, Idan |
Verified Numerical Methods for Ordinary Differential Equations | 2022 | Kellison, Ariel E. |
Self-correcting Neural Networks for Safe Classification | 2022 | Leino, Klas |