Reasoning web causality, explanations and declarative knowledge : 18th international summer school 2022, Berlin, Germany, September 27-30, 2022, tutorial lectures

Explainability in Machine Learning -- Causal Explanations and Fairness in Data -- Statistical Relational Extensions of Answer Set Programming -- Vadalog: Its Extensions and Business Applications -- Cross-Modal Knowledge Discovery, Inference, and Challenges -- Reasoning with Tractable Probabilistic C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaft: RW (VerfasserIn)
Weitere Verfasser: Bertossi, Leopoldo (HerausgeberIn), Xiao, Guohui (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2023
Schriftenreihe:Lecture notes in computer science 13759
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Explainability in Machine Learning -- Causal Explanations and Fairness in Data -- Statistical Relational Extensions of Answer Set Programming -- Vadalog: Its Extensions and Business Applications -- Cross-Modal Knowledge Discovery, Inference, and Challenges -- Reasoning with Tractable Probabilistic Circuits -- From Statistical Relational to Neural Symbolic Artificial Intelligence -- Building Intelligent Data Apps in Rel using Reasoning and Probabilistic Modelling.
The purpose of the Reasoning Web Summer School is to disseminate recent advances on reasoning techniques and related issues that are of particular interest to Semantic Web and Linked Data applications. It is primarily intended for postgraduate students, postdocs, young researchers, and senior researchers wishing to deepen their knowledge. As in the previous years, lectures in the summer school were given by a distinguished group of expert lecturers. The broad theme of this year's summer school was "Reasoning in Probabilistic Models and Machine Learning" and it covered various aspects of ontological reasoning and related issues that are of particular interest to Semantic Web and Linked Data applications. The following eight lectures were presented during the school: Logic-Based Explainability in Machine Learning; Causal Explanations and Fairness in Data; Statistical Relational Extensions of Answer Set Programming; Vadalog: Its Extensions and Business Applications; Cross-Modal Knowledge Discovery, Inference, and Challenges; Reasoning with Tractable Probabilistic Circuits; From Statistical Relational to Neural Symbolic Artificial Intelligence; Building Intelligent Data Apps in Rel using Reasoning and Probabilistic Modelling
Beschreibung:Literaturangaben und Index
Beschreibung:vi, 209 Seiten
Illustrationen, Diagramme
24 cm
ISBN:9783031314131
978-3-031-31413-1