Machine translation 19th China Conference, CCMT 2023, Jinan, China, October 19-21, 2023 : proceedings

Transn's submission for CCMT 2023 Quality Estimation Task.- HW-TSC's Neural Machine Translation System for CCMT 2023.- CCMT2023 Machine Translation Evaluation Technical Report.- Korean-Chinese Machine Translation Method Based on Independent Language Features.- NJUNLP's Submission for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaft: CCMT (VerfasserIn)
Weitere Verfasser: Feng, Yang (HerausgeberIn), Feng, Chong (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Singapore Springer 2023
Schriftenreihe:Communications in computer and information science 1922
Schlagworte:
Online Zugang:Cover
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transn's submission for CCMT 2023 Quality Estimation Task.- HW-TSC's Neural Machine Translation System for CCMT 2023.- CCMT2023 Machine Translation Evaluation Technical Report.- Korean-Chinese Machine Translation Method Based on Independent Language Features.- NJUNLP's Submission for CCMT 2023 Quality Estimation Task.- HIT-MI&T Lab's Submission to CCMT 2023 Automatic Post-Editing Task.- A k-Nearest Neighbor Approach for Domain-Specific Translation Quality Estimation.- WSA: A Unified Framework for Word and Sentence Autocompletion in Interactive Machine Translation.- ISTIC's Neural Machine Translation Systems for CCMT'2023.- A Novel Dataset and Benchmark Analysis on Document Image Translation.- Joint Contrastive Learning for Factual Consistency Evaluation of Cross-Lingual Abstract Summarization.
This book constitutes the refereed proceedings of the 19th China Conference on Machine Translation, CCMT 2023, held in Jinan, China, during October 19-21, 2023. The 8 full papers and 3 short papers included in this book were carefully reviewed and selected from 71 submissions. They focus on machine translation; improvement of translation models and systems; translation quality estimation; document-level machine translation; low-resource machine translation
Beschreibung:Literaturangaben
Beschreibung:xiv, 130 Seiten
Illustrationen, Diagramme
ISBN:9789819978939
978-981-99-7893-9