Extending Probabilistic U-Net Using MC-Dropout to Quantify Data and Model Uncertainty

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Brain Lesion Workshop (7. : 2021 : Online) Brainlesion ; Part 2
1. Verfasser: Bhat, Ishaan (VerfasserIn)
Weitere Verfasser: Kuijf, Hugo J. (VerfasserIn)
Pages:2
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2022
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Generalized Wasserstein Dice Loss, Test-Time Augmentation, and Transformers for the BraTS 2021 Challenge 2022 Fidon, Lucas
MS UNet: Multi-scale 3D UNet for Brain Tumor Segmentation 2022 Ahmad, Parvez
An Ensemble Approach to Automatic Brain Tumor Segmentation 2022 Shi, Yaying
Brain Tumor Segmentation Using Deep Infomax 2022 Marndi, Jitendra
Deep Learning Based Ensemble Approach for 3D MRI Brain Tumor Segmentation 2022 Do, Tien-Bach-Thanh
Brain Tumor Segmentation with Self-supervised Enhance Region Post-processing 2022 Pnev, Sergey
A Deep Learning Approach to Glioblastoma Radiogenomic Classification Using Brain MRI 2022 Emchinov, Aleksandr
A Study on Criteria for Training Collaborator Selection in Federated Learning 2022 Shambhat, Vishruth
Brain Tumor Segmentation Using Two-Stage Convolutional Neural Network for Federated Evaluation 2022 Pawar, Kamlesh
Using Out-of-the-Box Frameworks for Contrastive Unpaired Image Translation for Vestibular Schwannoma and Cochlea Segmentation: An Approach for the CrossMoDA Challenge 2022 Choi, Jae Won
Adaptive Weight Aggregation in Federated Learning for Brain Tumor Segmentation 2022 Khan, Muhammad Irfan
Unsupervised Domain Adaptation for Vestibular Schwannoma and Cochlea Segmentation via Semi-supervised Learning and Label Fusion 2022 Liu, Han
Coupling nnU-Nets with Expert Knowledge for Accurate Brain Tumor Segmentation from MRI 2022 Kotowski, Krzysztof
Brain Tumor Segmentation with Patch-Based 3D Attention UNet from Multi-parametric MRI 2022 Feng, Xue
Orthogonal-Nets: A Large Ensemble of 2D Neural Networks for 3D Brain Tumor Segmentation 2022 Pawar, Kamlesh
Disparity Autoencoders for Multi-class Brain Tumor Segmentation 2022 Bangalore Yogananda, Chandan Ganesh
Prediction of MGMT Methylation Status of Glioblastoma Using Radiomics and Latent Space Shape Features 2022 Pálsson, Sveinn
Automatic Brain Tumor Segmentation with a Bridge-Unet Deeply Supervised Enhanced with Downsampling Pooling Combination, Atrous Spatial Pyramid Pooling, Squeeze-and-Excitation and EvoNorm 2022 Carré, Alexandre
AttU-NET: Attention U-Net for Brain Tumor Segmentation 2022 Wang, Sihan
Brain Tumor Segmentation from Multiparametric MRI Using a Multi-encoder U-Net Architecture 2022 Alam, Saruar
Alle Artikel auflisten