Neural Network Based Brain Tumor Segmentation

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Brain Lesion Workshop (7. : 2021 : Online) Brainlesion ; Part 2
1. Verfasser: Shah, Darshat (VerfasserIn)
Weitere Verfasser: Biswas, Avishek (VerfasserIn), Sonpatki, Pranali (VerfasserIn), Chakravarty, Sunder (VerfasserIn), Shah, Nameeta (VerfasserIn)
Pages:2
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2022
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks 2022 Yan, Benjamin B.
Evaluating Scale Attention Network for Automatic Brain Tumor Segmentation with Large Multi-parametric MRI Database 2022 Yuan, Yading
Optimized U-Net for Brain Tumor Segmentation 2022 Futrega, Michał
Extending nn-UNet for Brain Tumor Segmentation 2022 Luu, Huan Minh
HNF-Netv2 for Brain Tumor Segmentation Using Multi-modal MR Imaging 2022 Jia, Haozhe
Neural Network Based Brain Tumor Segmentation 2022 Shah, Darshat
Combining CNNs with Transformer for Multimodal 3D MRI Brain Tumor Segmentation 2022 Dobko, Mariia
Comparison of MR Preprocessing Strategies and Sequences for Radiomics-Based MGMT Prediction 2022 Abler, Daniel
Federated Learning Using Variable Local Training for Brain Tumor Segmentation 2022 Tuladhar, Anup
Evaluation and Analysis of Different Aggregation and Hyperparameter Selection Methods for Federated Brain Tumor Segmentation 2022 Isik-Polat, Ece
Federated Learning for Brain Tumor Segmentation Using MRI and Transformers 2022 Nalawade, Sahil
Uncertainty Quantification in Medical Image Segmentation with Multi-decoder U-Net 2022 Yang, Yanwu
Coupling nnU-Nets with Expert Knowledge for Accurate Brain Tumor Segmentation from MRI 2022 Kotowski, Krzysztof
Brain Tumor Segmentation with Patch-Based 3D Attention UNet from Multi-parametric MRI 2022 Feng, Xue
Orthogonal-Nets: A Large Ensemble of 2D Neural Networks for 3D Brain Tumor Segmentation 2022 Pawar, Kamlesh
Disparity Autoencoders for Multi-class Brain Tumor Segmentation 2022 Bangalore Yogananda, Chandan Ganesh
Prediction of MGMT Methylation Status of Glioblastoma Using Radiomics and Latent Space Shape Features 2022 Pálsson, Sveinn
Automatic Brain Tumor Segmentation with a Bridge-Unet Deeply Supervised Enhanced with Downsampling Pooling Combination, Atrous Spatial Pyramid Pooling, Squeeze-and-Excitation and EvoNorm 2022 Carré, Alexandre
AttU-NET: Attention U-Net for Brain Tumor Segmentation 2022 Wang, Sihan
Brain Tumor Segmentation from Multiparametric MRI Using a Multi-encoder U-Net Architecture 2022 Alam, Saruar
Alle Artikel auflisten