Self-Distillation as Instance-Specific Label Smoothing

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (34. : 2020 : Online) 34th Conference on Neural Information Processing Systems (NeurIPS 2020) ; Volume 3 of 27
1. Verfasser: Zhang, Zhilu (VerfasserIn)
Weitere Verfasser: Sabuncu, Mert (VerfasserIn)
Pages:34
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization 2021 Letham, Ben
Explainable Voting 2021 Peters, Dominik
On Adaptive Attacks to Adversarial Example Defenses 2021 Tramer, Florian
Locally-Adaptive Nonparametric Online Learning 2021 Kuzborskij, Ilja
Ultra-Low Precision 4-bit Training of Deep Neural Networks 2021 Sun, Xiao
On Numerosity of Deep Neural Networks 2021 Zhang, Xi
MomentumRNN: Integrating Momentum into Recurrent Neural Networks 2021 Nguyen, Tan
On the equivalence of molecular graph convolution and molecular wave function with poor basis set 2021 Tsubaki, Masashi
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks 2021 Fuchs, Fabian
Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout 2021 Chen, Zhao
Cooperative Multi-player Bandit Optimization 2021 Bistritz, Ilai
Tight First- and Second-Order Regret Bounds for Adversarial Linear Bandits 2021 Ito, Shinji
Statistical-Query Lower Bounds via Functional Gradients 2021 Goel, Surbhi
Towards Problem-dependent Optimal Learning Rates 2021 Xu, Yunbei
Gradient Regularized V-Learning for Dynamic Treatment Regimes 2021 Zhang, Yao
Faster Wasserstein Distance Estimation with the Sinkhorn Divergence 2021 Chizat, Lénaïc
Robust Recursive Partitioning for Heterogeneous Treatment Effects with Uncertainty Quantification 2021 Lee, Hyun-Suk
UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging 2021 Zhou, Chu
Neural Networks Fail to Learn Periodic Functions and How to Fix It 2021 Ziyin, Liu
Prophet Attention: Predicting Attention with Future Attention 2021 Liu, Fenglin
Alle Artikel auflisten