Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (36. : 2022 : New Orleans, La.; Online) 36th Conference on Neural Information Processing Systems (NeurIPS 2022 ; Volume 6 of 50
1. Verfasser: Vinitsky, Eugene (VerfasserIn)
Weitere Verfasser: Lichtlé, Nathan (VerfasserIn), Yang, Xiaomeng (VerfasserIn), Amos, Brandon (VerfasserIn), Foerster, Jakob (VerfasserIn)
Pages:36
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2023
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Causal Identification under Markov equivalence: Calculus, Algorithm, and Completeness 2023 Jaber, Amin
Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems 2023 Thangamuthu, Abishek
Structural Knowledge Distillation for Object Detection 2023 de Rijk, Philip
Graph Convolution Network based Recommender Systems: Learning Guarantee and Item Mixture Powered Strategy 2023 Deng, Leyan
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces 2023 Kostic, Vladimir
CARLANE: A Lane Detection Benchmark for Unsupervised Domain Adaptation from Simulation to multiple Real-World Domains 2023 Stuhr, Bonifaz
Oracle-Efficient Online Learning for Smoothed Adversaries 2023 Haghtalab, Nika
Resource-Adaptive Federated Learning with All-In-One Neural Composition 2023 Mei, Yiqun
Optimal Rates for Regularized Conditional Mean Embedding Learning 2023 Li, Zhu
Divert More Attention to Vision-Language Tracking 2023 Guo, Mingzhe
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning 2023 Wild, Veit David
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach 2023 gu, lingyu
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss 2023 Altschuler, Jason
Theseus: A Library for Differentiable Nonlinear Optimization 2023 Pineda, Luis
Asymmetric Temperature Scaling Makes Larger Networks Teach Well Again 2023 Li, Xin-Chun
Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning 2023 Islam, Riashat
Uncalibrated Models Can Improve Human-AI Collaboration 2023 Vodrahalli, Kailas
On Enforcing Better Conditioned Meta-Learning for Rapid Few-Shot Adaptation 2023 Hiller, Markus
A General Framework for Auditing Differentially Private Machine Learning 2023 Lu, Fred
Robust Streaming PCA 2023 Bienstock, Daniel
Alle Artikel auflisten