ADAPTIVE SAMPLING FOR STOCHASTIC RISK-AVERSE LEARNING

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (34. : 2020 : Online) 34th Conference on Neural Information Processing Systems (NeurIPS 2020) ; Volume 2 of 27
1. Verfasser: Curi, Sebastian (VerfasserIn)
Weitere Verfasser: Levy, Kfir Y. (VerfasserIn), Jegelka, Stefanie (VerfasserIn), Krause, Andreas (VerfasserIn)
Pages:34
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
POST-TRAINING ITERATIVE HIERARCHICAL DATA AUGMENTATION FOR DEEP NETWORKS 2021 Khan, Adil
STOCHASTIC LATENT ACTOR-CRITIC: DEEP REINFORCEMENT LEARNING WITH A LATENT VARIABLE MODEL 2021 Lee, Alex X.
THE ROUTE TO CHAOS IN ROUTING GAMES: WHEN IS PRICE OF ANARCHY TOO OPTIMISTIC? 2021 Chotibut, Thiparat
A STATISTICAL FRAMEWORK FOR LOW-BITWIDTH TRAINING OF DEEP NEURAT NETWORKS 2021 Chen, ‚Jianfei
A COMBINATORIAL PERSPECTIVE ON TRANSFER LEARNING 2021 Wang, Jianan
CORESETS FOR NEAR-CONVEX FUNCTIONS 2021 Tukan, Murad
MODEL-BASED MULTI-AGENT RL IN ZERO-SUM MARKOV GAMES WITH NEAR-OPTIMAL SAMPLE COMPLEXITY 2021 Zhang, Kaiging
ENSEMBLING GEOPHYSICAL MODELS WITH BAYESIAN NEURAL NETWORKS 2021 Sengupta, Ushnish
PROVABLY GOOD BATCH OFF-POLICY REINFORCEMENT LEARNING WITHOUT GREAT EXPLORATION 2021 Liu, Yao
DETECTION AS REGRESSION: CERTIFIED OBJECT DETECTION WITH MEDIAN SMOOTHING 2021 Chiang, Ping-Yeh
EXPANDNETS: LINEAR OVER-PARAMETERIZATION TO TRAIN COMPACT CONVOLUTIONAL NETWORKS 2021 Guo, Shuxuan
A GAME THEORETIC ANALYSIS OF ADDITIVE ADVERSARIAL ATTACKS AND DEFENSES 2021 Pal, Ambar
POSTERIOR NETWORK: UNCERTAINTY ESTIMATION WITHOUT OOD SAMPLES VIA DENSITY-BASED PSEUDO-COUNTS 2021 Charpentier, Bertrand
CONTINUOUS SUBMODULAR MAXIMIZATION: BEYOND DR-SUBMODULARITY 2021 Feldman, Moran
A UNIFYING VIEW OF OPTIMISM IN EPISODIC REINFORCEMENT LEARNING 2021 Neu, Gergely
A BAYESIAN NONPARAMETRICS VIEW INTO DEEP REPRESENTA TIONS 2021 Jamroz, Michal
AUTO LEARNING ATTENTION 2021 Ma, Benteng
BELIEF PROPAGATION NEURAL NETWORKS EURE 2021 Kuck, Jonathan
OVER-PARAMETERIZED ADVERSARIAL TRAINING: AN ANALYSIS OVERCOMING THE CURSE OF DIMENSIONALITY 2021 Zhang, Yi
FAIRNESS WITHOUT DEMOGRAPHICS THROUGH ADVERSARIALLY REWEIGHTED LEARNING 2021 Lahoti, Preethi
Alle Artikel auflisten