Local limit theorems for inhomogeneous Markov chains

This book extends the local central limit theorem to inhomogeneous Markov chains whose state spaces and transition probabilities are allowed to change in time. Such chains are used to model Markovian systems depending on external time-dependent parameters. It develops a new general theory of local l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dolgopyat, Dmitry (VerfasserIn)
Körperschaft: Springer Nature Switzerland AG (Verlag)
Weitere Verfasser: Sarig, Omri M. (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2023
Schriftenreihe:Lecture notes in mathematics volume 2331
Schlagworte:
Online Zugang:Inhaltsverzeichnis
zbMATH
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This book extends the local central limit theorem to inhomogeneous Markov chains whose state spaces and transition probabilities are allowed to change in time. Such chains are used to model Markovian systems depending on external time-dependent parameters. It develops a new general theory of local limit theorems for additive functionals of Markov chains, in the regimes of local, moderate, and large deviations, and provides nearly optimal conditions for the classical expansions, as well as asymptotic corrections when these conditions fail. Applications include local limit theorems for independent but not identically distributed random variables, Markov chains in random environments, and time-dependent perturbations of homogeneous Markov chains. The inclusion of numerous examples, a comprehensive review of the literature, and an account of the historical background of the subject make this self-contained book accessible to graduate students. It will also be useful for researchers in probability and ergodic theory who are interested in asymptotic behaviors, random walks in random environments, random dynamical systems and non-stationary systems
Beschreibung:Literaturverzeichnis: Seite 327-335
Beschreibung:xiii, 340 Seiten
Illustrationen
24 cm
ISBN:3031326008
3-031-32600-8
9783031326004
978-3-031-32600-4
ISSN:0075-8434