IMPROVED GUARANTEES AND A MULTIPLE-DESCENT CURVE FOR COLUMN SUBSET SELECTION AND THE NYSTROMMETHOD

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (34. : 2020 : Online) 34th Conference on Neural Information Processing Systems (NeurIPS 2020) ; Volume 7 of 27
1. Verfasser: Derezinski, Michal (VerfasserIn)
Weitere Verfasser: Khanna, Rajiv (VerfasserIn), Mahoney, Michael W. (VerfasserIn)
Pages:34
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
NETWORK SIZE AND SIZE OF THE WEIGHTS IN MEMORIZATION WITH TWO-LAYERS NEUTRAL NETWORKS 2021 Bubeck, Sebastien
IMPROVED GUARANTEES AND A MULTIPLE-DESCENT CURVE FOR COLUMN SUBSET SELECTION AND THE NYSTROMMETHOD 2021 Derezinski, Michal
CERTIFYING STRATEGYPROOF AUCTION NETWORKS 2021 Curry, Michael
CONTINUAL LEARNING OF CONTROL PRIMITIVES : SKILL DISCOVERY VIA RESET-GAMES 2021 Xu, Kelvin
HOI ANALYSIS: INTEGRATING AND DECOMPOSING HUMAN-OBJECT INTERACTION 2021 Li, Yong-Lu
STRONGLY LOCAL P-NORM-CUT ALGORITHMS FOR SEMI-SUPERVISED LEARNING AND LOCAL GRAPH CLUSTERING 2021 Liu, Meng
A NEW INFERENCE APPROACH FOR TRAINING SHALLOW AND DEEP GENERALIZED LINEAR MODELS OF NOISY INTERACTING NEURONS 2021 Mahuas, Gabriel
A GAME-THEORETIC ANALYSIS OF THE EMPIRICAL REVENUE MAXIMIZATION ALGORITHM WITH ENDOGENOUS SAMPLING 2021 Deng, Xiaotie
NOISE-CONTRASTIVE ESTIMATION FOR MULTIVARIATE POINT PROCESSES 2021 Mei, Hongyuan
MODELING TASK EFFECTS ON MEANING REPRESENTATION IN THE BRAIN VIA ZERO-SHOT MEG PREDICTION 2021 Toneva, Mariya
ADAM WITH BANDIT SAMPLING FOR DEEP LEARNING 2021 Liu, Rui
PARABOLIC APPROXIMATION LINE SEARCH FOR DNS 2021 Mutschler, Maximus
LEARNING UNDER MODEL MISSPECIFICATION: APPLICATIONS TO VARIATIONAL AND ENSEMBLE METHODS 2021 Masegosa, Andres
THE VALUE EQUIVALENCE PRINCIPLE FOR MODEL-BASED REINFORCEMENT LEARNING 2021 Grimm, Christopher
ESTIMATING RANK-ONE SPIKES FROM HEAVY-TAILED NOISE VIA SELF-AVOIDING WALKS 2021 Ding, Jingqiu
LATENT WORLD MODELS FOR INTRINSICALLY MOTIVATED EXPLORATION 2021 Ermolov, Aleksandr
TRAINING GENERATIVE ADVERSARIAL NETWORKS BY SOLVING ORDINARY DIFFERNTIAL EQUATIONS 2021 Oin, Chongli
SELF-SUPERVISED CO-TRAINING FOR VIDEO REPRESENTATION LEARNING 2021 Han, Tengda
STOCHASTIC OPTIMIZATION FOR PERFORMATIVE PREDICTION 2021 Mendler-Dünner, Celestine
LEARNING DIFFERENTIABLE PROGRAMS WITH ADMISSIBLE NEURAL HEURISTICS 2021 Shah, Ameesh
Alle Artikel auflisten