Prune Your Model Before Distill It

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECCV (17. : 2022 : Tel Aviv; Online) Computer vision – ECCV 2022 ; Part 11
1. Verfasser: Park, Jinhyuk (VerfasserIn)
Weitere Verfasser: No, Albert (VerfasserIn)
Pages:2022
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2022
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Masked Generative Distillation 2022 Yang, Zhendong
Prune Your Model Before Distill It 2022 Park, Jinhyuk
Fine-grained Data Distribution Alignment for Post-Training Quantization 2022 Zhong, Yunshan
SP-Net: Slowly Progressing Dynamic Inference Networks 2022 Wang, Huanyu
EdgeViTs: Competing Light-Weight CNNs on Mobile Devices with Vision Transformers 2022 Pan, Junting
PalQuant: Accelerating High-Precision Networks on Low-Precision Accelerators 2022 Hu, Qinghao
AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets 2022 Tu, Zhijun
Self-slimmed Vision Transformer 2022 Zong, Zhuofan
Weight Fixing Networks 2022 Subia-Waud, Christopher
Switchable Online Knowledge Distillation 2022 Qian, Biao
SPIN: An Empirical Evaluation on Sharing Parameters of Isotropic Networks 2022 Lin, Chien-Yu
Ensemble Knowledge Guided Sub-network Search and Fine-Tuning for Filter Pruning 2022 Lee, Seunghyun
Lipschitz Continuity Retained Binary Neural Network 2022 Shang, Yuzhang
Meta-GF: Training Dynamic-Depth Neural Networks Harmoniously 2022 Sun, Yi
Towards Accurate Network Quantization with Equivalent Smooth Regularizer 2022 Solodskikh, Kirill
Knowledge Condensation Distillation 2022 Li, Chenxin
Patch Similarity Aware Data-Free Quantization for Vision Transformers 2022 Li, Zhikai
Symmetry Regularization and Saturating Nonlinearity for Robust Quantization 2022 Park, Sein
ℓ∞-Robustness and Beyond: Unleashing Efficient Adversarial Training 2022 Dolatabadi, Hadi M.
Deep Ensemble Learning by Diverse Knowledge Distillation for Fine-Grained Object Classification 2022 Okamoto, Naoki
Alle Artikel auflisten