MOMENTUM IMPROVES NORMALIZED SGD

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Machine Learning (37. : 2020 : Online) 37th International Conference on Machine Learning (ICML 2020) ; Part 3 of 15
1. Verfasser: Cutkosky, A. (VerfasserIn)
Weitere Verfasser: Mehta, H. (VerfasserIn)
Pages:37
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
A SIMPLE FRAMEWORK FOR CONTRASTIVE LEARNING OF VISUAL REPRESENTATIONS 2021 Chen, T.
NEGATIVE SAMPLING IN SEMI-SUPERVISED LEARNING 2021 Chen, J.
ON BREAKING DEEP GENERATIVE MODEL-BASED DEFENSES AND BEYOND 2021 Chen, Yanzhi
HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION VIA GRADIENT DESCENT 2021 Cheng, Y.
STOCHASTIC GRADIENT AND LANGEVIN PROCESSES 2021 Cheng, X.
K-MEANS++: FEW MORE STEPS YIELD CONSTANT APPROXIMATION 2021 Choo, Davin
DATA-DEPENDENT DIFFERENTIALLY PRIVATE PARAMETER LEARNING FOR DIRECTED GRAPHICAL MODELS 2021 Chowdhury, A.
ONLINE CONTINUAL LEARNING FROM IMBALANCED DATA 2021 Chrysakis, Aristotelis
DISTANCE METRIC LEARNING WITH JOINT REPRESENTATION DIVERSIFICATION 2021 Chu, Xu
TEACHING WITH LIMITED INFORMATION ON THE LEARNER'S BEHAVIOUR 2021 Cicalese, F.
MODEL FUSION WITH KULLBACK-LEIBLER DIVERGENCE 2021 Claici, Sebastian
COMPOSABLE SKETCHES FOR FUNCTIONS OF FREQUENCIES: BEYOND THE WORST CASE 2021 Cohen, Edith
ON EFFICIENT LOW DISTORTION ULTRAMETRIC EMBEDDING 2021 Cohen-Addad, Vincent
MOMENTUM IMPROVES NORMALIZED SGD 2021 Cutkosky, A.
GOODNESS-OF-FIT TESTS FOR INHOMOGENEOUS RANDOM GRAPHS 2021 Dan, Soham
ADVERSARIAL ATTACKS ON PROBABILISTIC AUTOREGRESSIVE FORECASTING MODELS 2021 Dang-Nhu, Raphaël
RETRO*: LEARNING RETROSYNTHETIC PLANNING WITH NEURAL GUIDED A* SEARCH 2021 Chen, Binghong
SIMPLE AND DEEP GRAPH CONVOLUTIONAL NETWORKS 2021 Chen, Ming
CONVERGENCE RATES OF VARIATIONAL INFERENCE IN SPARSE DEEP LEARNING 2021 Chérief-Abdellatif, Badr-Eddine
ON CORESETS FOR REGULARIZED REGRESSION 2021 Chhaya, Rachit
Alle Artikel auflisten