Engineering applications of neural networks 24th International Conference, EAAAI/EANN 2023, León, Spain, June 14-17, 2023, proceedings

Artificial Intelligence - Computational Methods - Ethology.- Classification - Filtering - Genetic Algorithms.- Complex Dynamic Networks' Optimization/ Graph Neural Networks.- Convolutional Neural Networks / Spiking Neural Networks.- Deep Learning Modeling.- Deep/Machine Learning in Engineering....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaft: EAAAI/EANN (VerfasserIn)
Weitere Verfasser: Alonso, Serafin (HerausgeberIn), Iliadis, Lazaros (HerausgeberIn), Jayne, Chrisina (HerausgeberIn), Maglogiannis, Ilias (HerausgeberIn), Pimenidis, Elias (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2023
Schriftenreihe:Communications in computer and information science 1826
Schlagworte:
Online Zugang:Cover
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial Intelligence - Computational Methods - Ethology.- Classification - Filtering - Genetic Algorithms.- Complex Dynamic Networks' Optimization/ Graph Neural Networks.- Convolutional Neural Networks / Spiking Neural Networks.- Deep Learning Modeling.- Deep/Machine Learning in Engineering.- LEARNING (Reinforcemet - Federated - Adversarial - Transfer).- Natural Language - Recommendation Systems.
This book constitutes the refereed proceedings of the 24th International Conference on Engineering Applications of Neural Networks, EANN 2023, held in León, Spain, in June 2023. The 41 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 125 submissions. The papers are organized in topical sections on artificial intelligence - computational methods - ethology; classification - filtering - genetic algorithms; complex dynamic networks' optimization/ graph neural networks; convolutional neural networks/spiking neural networks; deep learning modeling; deep/machine learning in engineering; LEARNING (reinforcemet - federated - adversarial - transfer); natural language - recommendation systems
Beschreibung:xxxii, 621 Seiten
Illustrationen, Diagramme
ISBN:9783031342035
978-3-031-34203-5