DISTRIBUTED NEWTON CAN COMMUNICATE LESS AND RESIST BYZANTINE WORKERS

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (34. : 2020 : Online) 34th Conference on Neural Information Processing Systems (NeurIPS 2020) ; Volume 22 of 27
1. Verfasser: Ghosh, Avishek (VerfasserIn)
Weitere Verfasser: Maity, Raj Kumar (VerfasserIn), Mazumdar, Arya (VerfasserIn)
Pages:34
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
CONTINUOUS REGULARIZED WASSERSTEIN BARYCENTERS 2021 Li, Lingxiao
AXIOMS FOR LEARNING FROM PAIRWISE COMPARISONS 2021 Noothigattu, Ritesh
FEWER IS MORE: A DEEP GRAPH METRIC LEARNING PERSPECTIVE USING FEWER PROXIES 2021 Zhu, Yuehua
REPLICA-EXCHANGE NOS\VE-HOOVER DYNAMICS FOR BAYESIAN LEARNING ON LARGE DATASETS 2021 Luo, Rui
NEURAL ANISOTROPY DIRECTIONS 2021 Ortiz-Jimenez, Guillermo
PAC-BAYESIAN BOUND FOR THE CONDITIONAL VALUE AT RISK 2021 Mhammedi, Zakaria
STOCHASTIC STEIN DISCREPANCIES 2021 Gorham, Jackson
CREAM OF THE CROP: DISTILLING PRIORITIZED PATHS FOR ONE-SHOT NEURAL ARCHITECTURE SEARCH 2021 Peng, Houwen
REPRESENTATION LEARNING FOR INTEGRATING MULTI-DOMAIN OUTCOMES TO OPTIMIZE INDIVIDUALIZED TREATMENT 2021 Chen, Yuan
DISTRIBUTED NEWTON CAN COMMUNICATE LESS AND RESIST BYZANTINE WORKERS 2021 Ghosh, Avishek
DIFFGCN: GRAPH CONVOLUTIONAL NETWORKS VIA DIFFERENTIAL OPERATORS AND ALGEBRAIC MULTIGRID POOLING 2021 Eliasof, Moshe
DECISION TREES AS PARTITIONING MACHINES TO CHARACTERIZE THEIR GENERALIZATION PROPERTIES 2021 Leboeuf, Jean-Samuel
3D SELF-SUPERVISED METHODS FOR MEDICAL IMAGING 2021 Taleb, Aiham
BAYESIAN FILTERING UNIFIES ADAPTIVE AND NON-ADAPTIVE NEURAL NETWORK OPTIMIZATION METHODS 2021 Aitchison, Laurence
WORST-CASE ANALYSIS FOR RANDOMLY COLLECTED DATA 2021 Chen, Justin
BYZANTINE RESILIENT DISTRIBUTED MULTI-TASK LEARNING 2021 Li, Jiani
LEARNING ROBUST DECISION POLICIES FROM OBSERVATIONAL DATA 2021 Osama, Muhammad
X-CAL: EXPLICIT CALIBRATION FOR SURVIVAL ANALYSIS 2021 Goldstein, Mark
BAIL: BEST-ACTION IMITATION LEARNING FOR BATCH DEEP REINFORCEMENT LEARNING 2021 Chen, Xinyue
BATCH NORMALIZATION PROVABLY AVOIDS RANKS COLLAPSE FOR RANDOMLY INITIALISED DEEP NETWORKS 2021 Daneshmand, Hadi
Alle Artikel auflisten