Interpretable Clustering of Students’ Solutions in Introductory Programming

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Artificial Intelligence in Education (22. : 2021 : Online) Artificial intelligence in education ; Part 1
1. Verfasser: Effenberger, Tomáš (VerfasserIn)
Weitere Verfasser: Pelánek, Radek (VerfasserIn)
Pages:1
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Affect-Targeted Interviews for Understanding Student Frustration 2021 Baker, Ryan S.
Multilingual Age of Exposure 2021 Botarleanu, Robert-Mihai
Explainable Recommendations in a Personalized Programming Practice System 2021 Barria-Pineda, Jordan
Adaptively Scaffolding Cognitive Engagement with Batch Constrained Deep Q-Networks 2021 Fahid, Fahmid Morshed
Discovering Co-creative Dialogue States During Collaborative Learning 2021 Griffith, Amanda E.
Evaluating Critical Reinforcement Learning Framework in the Field 2021 Ju, Song
A Fairness Evaluation of Automated Methods for Scoring Text Evidence Usage in Writing 2021 Litman, Diane
Deep Performance Factors Analysis for Knowledge Tracing 2021 Pu, Shi
Gaming and Confrustion Explain Learning Advantages for a Math Digital Learning Game 2021 Richey, J. Elizabeth
Assessing Algorithmic Fairness in Automatic Classifiers of Educational Forum Posts 2021 Sha, Lele
“Can You Clarify What You Said?”: Studying the Impact of Tutee Agents’ Follow-Up Questions on Tutors’ Learning 2021 Shahriar, Tasmia
A Multidimensional Item Response Theory Model for Rubric-Based Writing Assessment 2021 Uto, Masaki
Automatic Task Requirements Writing Evaluation via Machine Reading Comprehension 2021 Xu, Shiting
A Systematic Review of Data-Driven Approaches to Item Difficulty Prediction 2021 AlKhuzaey, Samah
Seven-Year Longitudinal Implications of Wheel Spinning and Productive Persistence 2021 Adjei, Seth A.
Interpretable Clustering of Students’ Solutions in Introductory Programming 2021 Effenberger, Tomáš
Option Tracing: Beyond Correctness Analysis in Knowledge Tracing 2021 Ghosh, Aritra
Engendering Trust in Automated Feedback: A Two Step Comparison of Feedbacks in Gesture Based Learning 2021 Hossain, Sameena
Machine Learning Models and Their Development Process as Learning Affordances for Humans 2021 Kent, Carmel
Predicting Co-occurring Emotions from Eye-Tracking and Interaction Data in MetaTutor 2021 Lallé, Sébastien
Alle Artikel auflisten