Image co-segmentation

Introduction -- Survey of Image Co-segmentation -- Mathematical Background -- Co-segmentation using a Classification Framework -- Use of Maximum Common Subgraph Matching -- Maximally Occurring Common Subgraph Matching -- Co-segmentation using Graph Convolutional Neural Network -- Use of a Conditiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hati, Avik (VerfasserIn)
Weitere Verfasser: Velmurugan, Rajbabu (VerfasserIn), Banerjee, Sayan (VerfasserIn), Chaudhuri, Subhasis (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Singapore Springer 2023
Schriftenreihe:Studies in computational intelligence 1082
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction -- Survey of Image Co-segmentation -- Mathematical Background -- Co-segmentation using a Classification Framework -- Use of Maximum Common Subgraph Matching -- Maximally Occurring Common Subgraph Matching -- Co-segmentation using Graph Convolutional Neural Network -- Use of a Conditional Siamese Convolutional Network -- Few-shot Learning for Co-segmentation -- Conclusions.
This book presents and analyzes methods to perform image co-segmentation. In this book, the authors describe efficient solutions to this problem ensuring robustness and accuracy, and provide theoretical analysis for the same. Six different methods for image co-segmentation are presented. These methods use concepts from statistical mode detection, subgraph matching, latent class graph, region growing, graph CNN, conditional encoder–decoder network, meta-learning, conditional variational encoder–decoder, and attention mechanisms. The authors have included several block diagrams and illustrative examples for the ease of readers. This book is a highly useful resource to researchers and academicians not only in the specific area of image co-segmentation but also in related areas of image processing, graph neural networks, statistical learning, and few-shot learning.
Beschreibung:xiv, 221 Seiten
Illustrationen, Diagramme
ISBN:9789811985690
978-981-19-8569-0
9789811985720
978-981-19-8572-0