Image co-segmentation
Introduction -- Survey of Image Co-segmentation -- Mathematical Background -- Co-segmentation using a Classification Framework -- Use of Maximum Common Subgraph Matching -- Maximally Occurring Common Subgraph Matching -- Co-segmentation using Graph Convolutional Neural Network -- Use of a Conditiona...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Singapore
Springer
2023
|
Schriftenreihe: | Studies in computational intelligence
1082 |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction -- Survey of Image Co-segmentation -- Mathematical Background -- Co-segmentation using a Classification Framework -- Use of Maximum Common Subgraph Matching -- Maximally Occurring Common Subgraph Matching -- Co-segmentation using Graph Convolutional Neural Network -- Use of a Conditional Siamese Convolutional Network -- Few-shot Learning for Co-segmentation -- Conclusions. This book presents and analyzes methods to perform image co-segmentation. In this book, the authors describe efficient solutions to this problem ensuring robustness and accuracy, and provide theoretical analysis for the same. Six different methods for image co-segmentation are presented. These methods use concepts from statistical mode detection, subgraph matching, latent class graph, region growing, graph CNN, conditional encoder–decoder network, meta-learning, conditional variational encoder–decoder, and attention mechanisms. The authors have included several block diagrams and illustrative examples for the ease of readers. This book is a highly useful resource to researchers and academicians not only in the specific area of image co-segmentation but also in related areas of image processing, graph neural networks, statistical learning, and few-shot learning. |
---|---|
Beschreibung: | xiv, 221 Seiten Illustrationen, Diagramme |
ISBN: | 9789811985690 978-981-19-8569-0 9789811985720 978-981-19-8572-0 |