Digitalization of design for support structures in laser powder bed fusion of metals
Dissertation, Technische Universität Hamburg, 2022
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaften: | , |
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Cham
Springer
2023
|
Schriftenreihe: | Light Engineering für die Praxis
|
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dissertation, Technische Universität Hamburg, 2022 Digital production by additive manufacturing -- Research Hypothesis and Methodology -- Material Model of Ti-6Al-4V Alloy in Laser Powder Bed Fusion -- Support Structure Topology Optimization -- Support Structure Design -- Support Structure Performance Benchmark -- Demonstration of algorithmic support structures. Additive manufacturing is considered a key technology for digital production. However, several barriers towards the broad industrial application exist, e.g. the associated cost and the required experience regarding the manufacturing process. To eradicate these barriers, the complete digitalization of the value creation process is needed. In this thesis, a digital, automated support structure design procedure is developed. Topology optimization is used for design rule determination, and the space colonization algorithm is adapted for the automated design. The validity of the procedure is proven experimentally, revealing sufficent mechanical performance alongside cost reduction at medium to large production scales. The content Provides a concise review of support structure optimization in laser powder bed fusion Includes thermo-mechanical material model of Ti-6Al-4V alloy Contains cost model for calculation of support-induced costs The author Katharina Bartsch studied mechanical engineering with a focus on product development, materials and production at the Technical University of Hamburg. Here, she received her doctorate in 2022 under Prof. Dr.-Ing. Claus Emmelmann (Institute for Laser and System Technologies - iLAS). During her time as a doctoral candidate, she worked as a research associate as well as chief engineer (since 2020) at the iLAS and as a team leader and research associate (since 2019) at the LZN Laser Zentrum Nord GmbH, later Fraunhofer Research Institution for Additive Production Technologies IAPT. |
---|---|
Beschreibung: | Sonstige Körperschaft: Technische Universität Hamburg, Institut für Laser- und Anlagensystemtechnik Literaturverzeichnis: Seite 229-281 |
Beschreibung: | XXXII, 300 Seiten Illustrationen, Diagramme |
ISBN: | 9783031229558 978-3-031-22955-8 |