Comparing Deep Learning and Conventional Machine Learning for Outcome Prediction of Head and Neck Cancer in PET/CT

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:HECKTOR (2. : 2021 : Online) Head and neck tumor segmentation and outcome prediction
1. Verfasser: Huynh, Bao-Ngoc (VerfasserIn)
Weitere Verfasser: Ren, Jintao (VerfasserIn), Groendahl, Aurora Rosvoll (VerfasserIn), Tomic, Oliver (VerfasserIn), Korreman, Stine Sofia (VerfasserIn), Futsaether, Cecilia Marie (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2022
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
A Coarse-to-Fine Framework for Head and Neck Tumor Segmentation in CT and PET Images 2022 An, Chengyang
The Head and Neck Tumor Segmentation in PET/CT Based on Multi-channel Attention Network 2022 Wang, Guoshuai
The Head and Neck Tumor Segmentation Based on 3D U-Net 2022 Xie, Juanying
Skip-SCSE Multi-scale Attention and Co-learning Method for Oropharyngeal Tumor Segmentation on Multi-modal PET-CT Images 2022 Biase, Alessia De
Deep Learning Based GTV Delineation and Progression Free Survival Risk Score Prediction for Head and Neck Cancer Patients 2022 Lang, Daniel M.
Priori and Posteriori Attention for Generalizing Head and Neck Tumors Segmentation 2022 Lu, Jiangshan
Dual-Path Connected CNN for Tumor Segmentation of Combined PET-CT Images and Application to Survival Risk Prediction 2022 Lee, Jiyeon
Progression Free Survival Prediction for Head and Neck Cancer Using Deep Learning Based on Clinical and PET/CT Imaging Data 2022 Naser, Mohamed A.
Self-supervised Multi-modality Image Feature Extraction for the Progression Free Survival Prediction in Head and Neck Cancer 2022 Ma, Baoqiang
Combining Tumor Segmentation Masks with PET/CT Images and Clinical Data in a Deep Learning Framework for Improved Prognostic Prediction in Head and Neck Squamous Cell Carcinoma 2022 Wahid, Kareem A.
Automatic Segmentation of Head and Neck (H&N) Primary Tumors in PET and CT Images Using 3D-Inception-ResNet Model 2022 Qayyum, Abdul
Head and Neck Cancer Primary Tumor Auto Segmentation Using Model Ensembling of Deep Learning in PET/CT Images 2022 Naser, Mohamed A.
PET/CT Head and Neck Tumor Segmentation and Progression Free Survival Prediction Using Deep and Machine Learning Techniques 2022 Martinez-Larraz, Alfonso
Automatic Head and Neck Tumor Segmentation and Progression Free Survival Analysis on PET/CT Images 2022 Yuan, Yading
Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free Survival Using a Full-Scale UNet with Attention 2022 Bourigault, Emmanuelle
CCUT-Net: Pixel-Wise Global Context Channel Attention UT-Net for Head and Neck Tumor Segmentation 2022 Wang, Jiao
Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images 2022 Andrearczyk, Vincent
Multimodal Spatial Attention Network for Automatic Head and Neck Tumor Segmentation in FDG-PET and CT Images 2022 Cho, Minjeong
Fusion-Based Head and Neck Tumor Segmentation and Survival Prediction Using Robust Deep Learning Techniques and Advanced Hybrid Machine Learning Systems 2022 Fatan, Mehdi
Deep Supervoxel Segmentation for Survival Analysis in Head and Neck Cancer Patients 2022 Juanco-Müller, Ángel Víctor
Alle Artikel auflisten