Analysis of Depth Estimation and Semantic Segmentation Algorithms for the Environment Perception of Automated Vehicles

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Internationale ATZ-Fachtagung Automatisiertes Fahren (6. : 2020 : Wiesbaden) Automatisiertes Fahren 2020
1. Verfasser: Schmidt, Manuel (VerfasserIn)
Weitere Verfasser: Stannartz, Niklas (VerfasserIn), Bertram, Torsten (VerfasserIn)
Pages:2020
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Emergency braking in a city bus - a new approach for protecting standing passengers 2021 Matthaei, Richard
Why Current Safety Analysis Methods Fail at Covering Lethal System Designs 2021 Friedmann, Simon
Achieving Autonomous Driving in the Bus Industry 2021 Marquard, Ralf
Safe and Robust Function Development for Urban Autonomous Driving Based on Agile Methodology and DevOps 2021 Kallweit, Roland
Trajectory Following Control for Automated Driving 2021 Homann, Andreas
Legal evaluation of monetizing automotive data 2021 Köster, Oliver
Self-driving vehicles will revolutionize the transportation system 2021 Coelingh, Erik
Planning Trajectories Using an Extended Sequential Linearization Algorithm 2021 Sippel, Marco
High-Resolution Neural Style Transfer for Test Data Generation for ADAS/HAD Functions 2021 Junginger, Andrej
Highly Parameterizable and Generic Perception Sensor Model Architecture 2021 Linnhoff, Clemens
Progress on the AUTOSAR Adaptive Platform for Intelligent Vehicles 2021 Reichart, Günter
New Challenges for Deep Neural Networks in Automotive Radar Perception 2021 Scheiner, Nicolas
Automated Testing of Vehicle Integrated Environmental Sensors 2021 Birkemeyer, Lukas
Maintaining performance of driver assistance systems and automated driving functions over the life cycle 2021 Kiebach, Helge
Concept and Implementation of an Optimization-based Safety Verification Strategy for a Trajectory Following Controller 2021 Lubiniecki, Toni
Analysis of Depth Estimation and Semantic Segmentation Algorithms for the Environment Perception of Automated Vehicles 2021 Schmidt, Manuel
Clouds Ahead - The Transformation of Vehicle Development and Data Management Processes 2021 Niederbrucker, Gerhard
Virtual test drives with multiple vehicles under test for the evaluation of collaborative assisted and automated driving functions 2021 Kaths, Jakob
High-Resolution Gated Depth Estimation for Self-Driving Cars in AdverseWeather 2021 Gruber, Tobias
Alle Artikel auflisten