A Deep Transfer Learning Framework for 3D Brain Imaging Based on Optimal Mass Transport

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MLCN (3. : 2020 : Online) Machine learning in clinical neuroimaging and radiogenomics in neuro-oncology
1. Verfasser: Zeng, Ling-Li (VerfasserIn)
Weitere Verfasser: Ching, Christopher R. K. (VerfasserIn), Abaryan, Zvart (VerfasserIn), Thomopoulos, Sophia I. (VerfasserIn), Gao, Kai (VerfasserIn), Zhu, Alyssa H. (VerfasserIn), Ragothaman, Anjanibhargavi (VerfasserIn), Rashid, Faisal (VerfasserIn), Harrison, Marc (VerfasserIn), Salminen, Lauren E. (VerfasserIn), Riedel, Brandalyn C. (VerfasserIn), Jahanshad, Neda (VerfasserIn), Hu, Dewen (VerfasserIn), Thompson, Paul M. (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Large-Scale Unbiased Neuroimage Indexing via 3D GPU-SIFT Filtering and Keypoint Masking 2020 Pepin, Étienne
Generalizing MRI Subcortical Segmentation to Neurodegeneration 2020 Li, Hao
Machine Learning and Glioblastoma: Treatment Response Monitoring Biomarkers in 2021 2020 Booth, Thomas C.
Brain Tumor Survival Prediction Using Radiomics Features 2020 Yousaf, Sobia
Radiomics and Radiogenomics with Deep Learning in Neuro-oncology 2020 Patel, Jay
SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification 2020 Asif, Umar
Surface Agnostic Metrics for Cortical Volume Segmentation and Regression 2020 Budd, Samuel
Ischemic Stroke Segmentation from CT Perfusion Scans Using Cluster-Representation Learning 2020 Zhang, Jianyuan
Multiple Sclerosis Lesion Segmentation Using Longitudinal Normalization and Convolutional Recurrent Neural Networks 2020 Tascon-Morales, Sergio
An Anatomically-Informed 3D CNN for Brain Aneurysm Classification with Weak Labels 2020 Di Noto, Tommaso
A Deep Transfer Learning Framework for 3D Brain Imaging Based on Optimal Mass Transport 2020 Zeng, Ling-Li
Towards MRI Progression Features for Glioblastoma Patients: From Automated Volumetry and Classical Radiomics to Deep Feature Learning 2020 Suter, Yannick
Using Functional Magnetic Resonance Imaging and Personal Characteristics Features for Detection of Neurological Conditions 2020 Rathore, Batool
Local Binary and Ternary Patterns Based Quantitative Texture Analysis for Assessment of IDH Genotype in Gliomas on Multi-modal MRI 2020 Gore, Sonal
Radiogenomics of Glioblastoma: Identification of Radiomics Associated with Molecular Subtypes 2020 Wijethilake, Navodini
Deep Learning for Non-invasive Cortical Potential Imaging 2020 Razorenova, Alexandra
Deep Voxel-Guided Morphometry (VGM): Learning Regional Brain Changes in Serial MRI 2020 Schnurr, Alena-Kathrin
A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis 2020 Cerri, Stefano
Automated Multi-class Brain Tumor Types Detection by Extracting RICA Based Features and Employing Machine Learning Techniques 2020 Anjum, Sadia
Overall Survival Prediction in Gliomas Using Region-Specific Radiomic Features 2020 Shaheen, Asma
Alle Artikel auflisten