Calibration of Deep Medical Image Classifiers: An Empirical Comparison Using Dermatology and Histopathology Datasets

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:UNSURE (4. : 2022 : Singapur; Online) Uncertainty for safe utilization of machine learning in medical imaging
1. Verfasser: Carse, Jacob (VerfasserIn)
Weitere Verfasser: Olmo, Andres Alvarez (VerfasserIn), McKenna, Stephen (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2022
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Quantification of Predictive Uncertainty via Inference-Time Sampling 2022 Tóthová, Katarína
Improved Post-hoc Probability Calibration for Out-of-Domain MRI Segmentation 2022 Ouyang, Cheng
On the Pitfalls of Entropy-Based Uncertainty for Multi-class Semi-supervised Segmentation 2022 Waerebeke, Martin Van
Uncertainty Categories in Medical Image Segmentation: A Study of Source-Related Diversity 2022 Whitbread, Luke
What Do Untargeted Adversarial Examples Reveal in Medical Image Segmentation? 2022 Park, Gangin
MOrphologically-Aware Jaccard-Based ITerative Optimization (MOJITO) for Consensus Segmentation 2022 Hamzaouit, Dimitri
Improving Error Detection in Deep Learning Based Radiotherapy Autocontouring Using Bayesian Uncertainty 2022 Mody, Prerak
Calibration of Deep Medical Image Classifiers: An Empirical Comparison Using Dermatology and Histopathology Datasets 2022 Carse, Jacob
Stochastic Weight Perturbations Along the Hessian: A Plug-and-Play Method to Compute Uncertainty 2022 Ravishankar, Hariharan
nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation Methods 2022 Baugh, Matthew
Generalized Probabilistic U-Net for Medical Image Segementation 2022 Bhat, Ishaan
Joint Paraspinal Muscle Segmentation and Inter-rater Labeling Variability Prediction with Multi-task TransUNet 2022 Roshanzamir, Parinaz
Information Gain Sampling for Active Learning in Medical Image Classification 2022 Mehta, Raghav
Alle Artikel auflisten